改进了许多目标优化问题的二级排序

H. Singh, A. Isaacs, T. Ray, W. Smith
{"title":"改进了许多目标优化问题的二级排序","authors":"H. Singh, A. Isaacs, T. Ray, W. Smith","doi":"10.1145/1569901.1570190","DOIUrl":null,"url":null,"abstract":"Many objective optimization refers to optimization problems for which the number of objectives is significantly greater than conventionally studied 2 or 3. For such problems, large number of solutions become non-dominated, which reduces the convergence pressure of the Evolutionary Algorithms~(EAs) towards the Pareto Optimal Front. Recently, alternate secondary ranking schemes for have been suggested for NSGA-II in lieu of crowding distance to expedite its convergence for many objective problems. In this paper, we improvise upon an existing scheme~(epsilon dominance). The proposed approach is found to perform better than the other substitute distance assignment methods for the problems studied in this paper. A new diversity metric has also been proposed, which can be used in order to compare the performance of the various EAs.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An improved secondary ranking for many objective optimization problems\",\"authors\":\"H. Singh, A. Isaacs, T. Ray, W. Smith\",\"doi\":\"10.1145/1569901.1570190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many objective optimization refers to optimization problems for which the number of objectives is significantly greater than conventionally studied 2 or 3. For such problems, large number of solutions become non-dominated, which reduces the convergence pressure of the Evolutionary Algorithms~(EAs) towards the Pareto Optimal Front. Recently, alternate secondary ranking schemes for have been suggested for NSGA-II in lieu of crowding distance to expedite its convergence for many objective problems. In this paper, we improvise upon an existing scheme~(epsilon dominance). The proposed approach is found to perform better than the other substitute distance assignment methods for the problems studied in this paper. A new diversity metric has also been proposed, which can be used in order to compare the performance of the various EAs.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多目标优化是指目标数量明显大于传统研究的2或3的优化问题。对于这类问题,大量的解变得非支配,这降低了进化算法向Pareto最优前沿收敛的压力。近年来,为了加快NSGA-II在许多客观问题上的收敛速度,提出了替代拥挤距离的NSGA-II二级排序方案。在本文中,我们在一个已有的方案~(epsilon优势)上进行了即兴创作。对于本文研究的问题,所提出的方法比其他替代距离分配方法表现得更好。本文还提出了一种新的分集度量,可用于比较各种ea的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved secondary ranking for many objective optimization problems
Many objective optimization refers to optimization problems for which the number of objectives is significantly greater than conventionally studied 2 or 3. For such problems, large number of solutions become non-dominated, which reduces the convergence pressure of the Evolutionary Algorithms~(EAs) towards the Pareto Optimal Front. Recently, alternate secondary ranking schemes for have been suggested for NSGA-II in lieu of crowding distance to expedite its convergence for many objective problems. In this paper, we improvise upon an existing scheme~(epsilon dominance). The proposed approach is found to perform better than the other substitute distance assignment methods for the problems studied in this paper. A new diversity metric has also been proposed, which can be used in order to compare the performance of the various EAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1