G. Csaba, M. Pufall, D. Nikonov, G. Bourianoff, A. Horváth, T. Roska, W. Porod
{"title":"自旋力矩振荡器模型在联想记忆中的应用","authors":"G. Csaba, M. Pufall, D. Nikonov, G. Bourianoff, A. Horváth, T. Roska, W. Porod","doi":"10.1109/CNNA.2012.6331474","DOIUrl":null,"url":null,"abstract":"We present physics-based models for both individual and coupled spin torque nano oscillators (STNOs). Such STNOs may become as building blocks for CNN-like dynamic computing architectures. We discuss a hierarchy of models, extending from micromagnetic models, which include the detailed geometry and physics, to compact models, which are based on parameters extracted from the underlying physical description. These simulations also include coupling between individual STNOs, both via spin waves and via electrical interconnects. Using this modeling approach, we demonstrate frequency entrainment and phase synchronization between STOs in the array, which enable computing functions.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Spin torque oscillator models for applications in associative memories\",\"authors\":\"G. Csaba, M. Pufall, D. Nikonov, G. Bourianoff, A. Horváth, T. Roska, W. Porod\",\"doi\":\"10.1109/CNNA.2012.6331474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present physics-based models for both individual and coupled spin torque nano oscillators (STNOs). Such STNOs may become as building blocks for CNN-like dynamic computing architectures. We discuss a hierarchy of models, extending from micromagnetic models, which include the detailed geometry and physics, to compact models, which are based on parameters extracted from the underlying physical description. These simulations also include coupling between individual STNOs, both via spin waves and via electrical interconnects. Using this modeling approach, we demonstrate frequency entrainment and phase synchronization between STOs in the array, which enable computing functions.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spin torque oscillator models for applications in associative memories
We present physics-based models for both individual and coupled spin torque nano oscillators (STNOs). Such STNOs may become as building blocks for CNN-like dynamic computing architectures. We discuss a hierarchy of models, extending from micromagnetic models, which include the detailed geometry and physics, to compact models, which are based on parameters extracted from the underlying physical description. These simulations also include coupling between individual STNOs, both via spin waves and via electrical interconnects. Using this modeling approach, we demonstrate frequency entrainment and phase synchronization between STOs in the array, which enable computing functions.