{"title":"原子光学:基础和应用","authors":"Tilman Pfau","doi":"10.1109/CLEOPR.1999.811397","DOIUrl":null,"url":null,"abstract":"Matter wave optics has a long tradition spanning over many decades starting with electron and ion optics. These techniques now find commercial applications in microscopy and lithography. Neutron optics contributed many beautiful experiments that tested many fundamental principles in quantum mechanics. Over the last decade the field of atom optics has been developed. In particular the availability of narrowband tunable laser sources has opened up the addressing of the internal electronic degrees of freedom of the atoms and as a result, the manipulation of their trajectories. The dissipative nature of the atom light interaction is used for laser cooling methods e.g. to collimate atomic beams to a high brightness whereas the dispersive nature of the interaction is used to realize different atom optical components like lenses, beam-splitters and mirrors. Consequently atom optics is now at a stage where applications of those elements in more complex systems are studied. An overview of recent developments is given. This includes atom interferometry and atom lithography experiments and experiments with a quasi 2D gas of ultra cold atoms in planar waveguides. Future directions and applications are outlined.","PeriodicalId":408728,"journal":{"name":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atom optics: basics and applications\",\"authors\":\"Tilman Pfau\",\"doi\":\"10.1109/CLEOPR.1999.811397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matter wave optics has a long tradition spanning over many decades starting with electron and ion optics. These techniques now find commercial applications in microscopy and lithography. Neutron optics contributed many beautiful experiments that tested many fundamental principles in quantum mechanics. Over the last decade the field of atom optics has been developed. In particular the availability of narrowband tunable laser sources has opened up the addressing of the internal electronic degrees of freedom of the atoms and as a result, the manipulation of their trajectories. The dissipative nature of the atom light interaction is used for laser cooling methods e.g. to collimate atomic beams to a high brightness whereas the dispersive nature of the interaction is used to realize different atom optical components like lenses, beam-splitters and mirrors. Consequently atom optics is now at a stage where applications of those elements in more complex systems are studied. An overview of recent developments is given. This includes atom interferometry and atom lithography experiments and experiments with a quasi 2D gas of ultra cold atoms in planar waveguides. Future directions and applications are outlined.\",\"PeriodicalId\":408728,\"journal\":{\"name\":\"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)\",\"volume\":\"14 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOPR.1999.811397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOPR.1999.811397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matter wave optics has a long tradition spanning over many decades starting with electron and ion optics. These techniques now find commercial applications in microscopy and lithography. Neutron optics contributed many beautiful experiments that tested many fundamental principles in quantum mechanics. Over the last decade the field of atom optics has been developed. In particular the availability of narrowband tunable laser sources has opened up the addressing of the internal electronic degrees of freedom of the atoms and as a result, the manipulation of their trajectories. The dissipative nature of the atom light interaction is used for laser cooling methods e.g. to collimate atomic beams to a high brightness whereas the dispersive nature of the interaction is used to realize different atom optical components like lenses, beam-splitters and mirrors. Consequently atom optics is now at a stage where applications of those elements in more complex systems are studied. An overview of recent developments is given. This includes atom interferometry and atom lithography experiments and experiments with a quasi 2D gas of ultra cold atoms in planar waveguides. Future directions and applications are outlined.