使用虚拟集群分配资源

Mark Stillwell, D. Schanzenbach, F. Vivien, H. Casanova
{"title":"使用虚拟集群分配资源","authors":"Mark Stillwell, D. Schanzenbach, F. Vivien, H. Casanova","doi":"10.1109/CCGRID.2009.23","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for sharing cluster resources among competing jobs. The key advantage of our approach over current solutions is that it increases cluster utilization while optimizing a user-centric metric that captures both notions of performance and fairness. We motivate and formalize the corresponding resource allocation problem, determine its complexity, and propose several algorithms to solve it in the case of a static workload that consists of sequential jobs. Via extensive simulation experiments we identify an algorithm that runs quickly, that is always on par with or better than its competitors, and that produces resource allocations that are close to optimal. We find that the extension of our approach to parallel jobs leads to similarly good results. Finally, we explain how to extend our work to dynamicworkloads.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Resource Allocation Using Virtual Clusters\",\"authors\":\"Mark Stillwell, D. Schanzenbach, F. Vivien, H. Casanova\",\"doi\":\"10.1109/CCGRID.2009.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach for sharing cluster resources among competing jobs. The key advantage of our approach over current solutions is that it increases cluster utilization while optimizing a user-centric metric that captures both notions of performance and fairness. We motivate and formalize the corresponding resource allocation problem, determine its complexity, and propose several algorithms to solve it in the case of a static workload that consists of sequential jobs. Via extensive simulation experiments we identify an algorithm that runs quickly, that is always on par with or better than its competitors, and that produces resource allocations that are close to optimal. We find that the extension of our approach to parallel jobs leads to similarly good results. Finally, we explain how to extend our work to dynamicworkloads.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

我们提出了一种在竞争作业之间共享集群资源的新方法。与当前解决方案相比,我们的方法的关键优势在于,它提高了集群利用率,同时优化了以用户为中心的指标,该指标同时捕获了性能和公平性的概念。我们激发并形式化了相应的资源分配问题,确定了其复杂性,并提出了几种算法来解决由顺序作业组成的静态工作负载的问题。通过广泛的模拟实验,我们确定了一种快速运行的算法,它总是与竞争对手持平或更好,并且产生接近最佳的资源分配。我们发现,将我们的方法扩展到并行工作也会产生同样好的结果。最后,我们将解释如何将我们的工作扩展到动态工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Allocation Using Virtual Clusters
We propose a novel approach for sharing cluster resources among competing jobs. The key advantage of our approach over current solutions is that it increases cluster utilization while optimizing a user-centric metric that captures both notions of performance and fairness. We motivate and formalize the corresponding resource allocation problem, determine its complexity, and propose several algorithms to solve it in the case of a static workload that consists of sequential jobs. Via extensive simulation experiments we identify an algorithm that runs quickly, that is always on par with or better than its competitors, and that produces resource allocations that are close to optimal. We find that the extension of our approach to parallel jobs leads to similarly good results. Finally, we explain how to extend our work to dynamicworkloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1