利用遗传算法优化Nadaraya-Watson融合器的设计

S. Wellington, J.D. Vincent
{"title":"利用遗传算法优化Nadaraya-Watson融合器的设计","authors":"S. Wellington, J.D. Vincent","doi":"10.1109/ICIF.2002.1021170","DOIUrl":null,"url":null,"abstract":"The Nadaraya-Watson (N-W) statistical estimator based on Haar kernels can be used to implement a fuser based on empirical data. Fuser design essentially consists of the following interrelated activities: select a set of n observations from a pool of p prior observations; select a value for the bandwidth. Optimal fuser design can therefore involve a very large search space. This paper proposes the use of a genetic algorithm (GA) to optimise the fuser design. The GA is used to evolve optimal values for the bandwidth and subset of observations used to implement the fuser. Indicative test results are provided. The N-W fuser is shown to perform better than the best single sensor. The GA provides better results than manual design optimisation, with the performance of the N-W fuser comparable to that achieved using a feedforward neural network.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design optimisation of the Nadaraya-Watson fuser using a genetic algorithm\",\"authors\":\"S. Wellington, J.D. Vincent\",\"doi\":\"10.1109/ICIF.2002.1021170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Nadaraya-Watson (N-W) statistical estimator based on Haar kernels can be used to implement a fuser based on empirical data. Fuser design essentially consists of the following interrelated activities: select a set of n observations from a pool of p prior observations; select a value for the bandwidth. Optimal fuser design can therefore involve a very large search space. This paper proposes the use of a genetic algorithm (GA) to optimise the fuser design. The GA is used to evolve optimal values for the bandwidth and subset of observations used to implement the fuser. Indicative test results are provided. The N-W fuser is shown to perform better than the best single sensor. The GA provides better results than manual design optimisation, with the performance of the N-W fuser comparable to that achieved using a feedforward neural network.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于Haar核的Nadaraya-Watson (N-W)统计估计器可用于实现基于经验数据的融合器。Fuser设计基本上由以下相关活动组成:从p个先验观测值池中选择n个观测值;选择带宽的值。因此,最佳融合器设计可能涉及非常大的搜索空间。本文提出采用遗传算法对融合器进行优化设计。遗传算法用于演化用于实现融合器的带宽和观测子集的最优值。提供了指示性测试结果。结果表明,N-W融合器的性能优于最佳的单个传感器。遗传算法提供了比手动设计优化更好的结果,其N-W融合器的性能可与使用前馈神经网络实现的性能相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design optimisation of the Nadaraya-Watson fuser using a genetic algorithm
The Nadaraya-Watson (N-W) statistical estimator based on Haar kernels can be used to implement a fuser based on empirical data. Fuser design essentially consists of the following interrelated activities: select a set of n observations from a pool of p prior observations; select a value for the bandwidth. Optimal fuser design can therefore involve a very large search space. This paper proposes the use of a genetic algorithm (GA) to optimise the fuser design. The GA is used to evolve optimal values for the bandwidth and subset of observations used to implement the fuser. Indicative test results are provided. The N-W fuser is shown to perform better than the best single sensor. The GA provides better results than manual design optimisation, with the performance of the N-W fuser comparable to that achieved using a feedforward neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1