无铅锡基钎料合金在多轴载荷下疲劳损伤发展的实验与数值研究

B. Métais, M. Kuezynska, A. Kabakchiev, S. Wolfangel, P. Buhl, S. Weihe
{"title":"无铅锡基钎料合金在多轴载荷下疲劳损伤发展的实验与数值研究","authors":"B. Métais, M. Kuezynska, A. Kabakchiev, S. Wolfangel, P. Buhl, S. Weihe","doi":"10.1109/EUROSIME.2016.7463378","DOIUrl":null,"url":null,"abstract":"Electronic devices for automotive applications undergo substantial thermo-mechanical cyclic loads during their operation. Within the phase of assembly, a large variety of passive and active electronic components are electrically connected by solder joints of complex geometrical shapes. As a consequence, external thermomechanical loads result in local multiaxial stress states in the solder material during their operation. In the past years, significant efforts were made in the characterization of solder materials and the accurate FE-modeling of their viscoplastic deformation behavior as well as the modeling of their damage behavior. However, material testing and numerical model calibration were focused on uniaxial tests, which result in a homogeneous stress state and a fixed ratio between its hydrostatic and deviatoric parts. Therefore, the correlation between varying multiaxial loads and cyclic damage evolution in solder alloys is still not understood. Here, we report on the experimental investigation of Low Cycle Fatigue (LCF) on bulk samples under uniaxial and multiaxial stress states realized by means of a pure tension-compression and superimposed tension-torsion loads. In order to describe the observed cyclic degradation behavior, a phenomenological fatigue damage model is modified incorporating the influence of multiaxial stresses in the damage development. The new damage model is implemented as a user-subroutine for Finite Element (FE) calculation supported by the commercial FE-package ansysTM. Uniaxial and multiaxial loads are simulated on the meshed specimen-geometry. The material model is able to describe the mechanical properties in the initial state of deformation. Besides, it shows numerical stability which enables the simulation of large number of cyclic loads. Based on the damage mechanic approach enhanced by multiaxial effects, this study contributes to the framework of solder joints modeling.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental and numerical investigation of fatigue damage development under multiaxial loads in a lead-free Sn-based solder alloy\",\"authors\":\"B. Métais, M. Kuezynska, A. Kabakchiev, S. Wolfangel, P. Buhl, S. Weihe\",\"doi\":\"10.1109/EUROSIME.2016.7463378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic devices for automotive applications undergo substantial thermo-mechanical cyclic loads during their operation. Within the phase of assembly, a large variety of passive and active electronic components are electrically connected by solder joints of complex geometrical shapes. As a consequence, external thermomechanical loads result in local multiaxial stress states in the solder material during their operation. In the past years, significant efforts were made in the characterization of solder materials and the accurate FE-modeling of their viscoplastic deformation behavior as well as the modeling of their damage behavior. However, material testing and numerical model calibration were focused on uniaxial tests, which result in a homogeneous stress state and a fixed ratio between its hydrostatic and deviatoric parts. Therefore, the correlation between varying multiaxial loads and cyclic damage evolution in solder alloys is still not understood. Here, we report on the experimental investigation of Low Cycle Fatigue (LCF) on bulk samples under uniaxial and multiaxial stress states realized by means of a pure tension-compression and superimposed tension-torsion loads. In order to describe the observed cyclic degradation behavior, a phenomenological fatigue damage model is modified incorporating the influence of multiaxial stresses in the damage development. The new damage model is implemented as a user-subroutine for Finite Element (FE) calculation supported by the commercial FE-package ansysTM. Uniaxial and multiaxial loads are simulated on the meshed specimen-geometry. The material model is able to describe the mechanical properties in the initial state of deformation. Besides, it shows numerical stability which enables the simulation of large number of cyclic loads. Based on the damage mechanic approach enhanced by multiaxial effects, this study contributes to the framework of solder joints modeling.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

汽车电子设备在运行过程中承受大量的热-机械循环载荷。在装配阶段,各种各样的无源和有源电子元件通过复杂几何形状的焊点电连接。因此,外部热机械载荷导致焊接材料在其操作过程中的局部多轴应力状态。在过去的几年里,人们在焊接材料的表征和其粘塑性变形行为的精确有限元建模以及损伤行为的建模方面做了大量的工作。然而,材料测试和数值模型校准主要集中在单轴试验上,导致其应力状态均匀,流体静力和偏力部分之间的比例固定。因此,不同的多轴载荷与钎料合金的循环损伤演变之间的关系尚不清楚。在此,我们报告了在单轴和多轴应力状态下,通过纯拉伸-压缩和叠加拉伸-扭转载荷实现的体试样的低周疲劳(LCF)的实验研究。为了描述观察到的循环退化行为,将多轴应力在损伤发展中的影响纳入到现象学疲劳损伤模型中。在商用有限元软件包ansysTM的支持下,将新的损伤模型作为有限元计算的用户子程序实现。在网格化的试样几何上模拟了单轴和多轴载荷。该材料模型能较好地描述材料在初始变形状态下的力学性能。此外,该方法具有数值稳定性,可以模拟大量的循环荷载。基于多轴效应增强的损伤力学方法,建立了焊点模型的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and numerical investigation of fatigue damage development under multiaxial loads in a lead-free Sn-based solder alloy
Electronic devices for automotive applications undergo substantial thermo-mechanical cyclic loads during their operation. Within the phase of assembly, a large variety of passive and active electronic components are electrically connected by solder joints of complex geometrical shapes. As a consequence, external thermomechanical loads result in local multiaxial stress states in the solder material during their operation. In the past years, significant efforts were made in the characterization of solder materials and the accurate FE-modeling of their viscoplastic deformation behavior as well as the modeling of their damage behavior. However, material testing and numerical model calibration were focused on uniaxial tests, which result in a homogeneous stress state and a fixed ratio between its hydrostatic and deviatoric parts. Therefore, the correlation between varying multiaxial loads and cyclic damage evolution in solder alloys is still not understood. Here, we report on the experimental investigation of Low Cycle Fatigue (LCF) on bulk samples under uniaxial and multiaxial stress states realized by means of a pure tension-compression and superimposed tension-torsion loads. In order to describe the observed cyclic degradation behavior, a phenomenological fatigue damage model is modified incorporating the influence of multiaxial stresses in the damage development. The new damage model is implemented as a user-subroutine for Finite Element (FE) calculation supported by the commercial FE-package ansysTM. Uniaxial and multiaxial loads are simulated on the meshed specimen-geometry. The material model is able to describe the mechanical properties in the initial state of deformation. Besides, it shows numerical stability which enables the simulation of large number of cyclic loads. Based on the damage mechanic approach enhanced by multiaxial effects, this study contributes to the framework of solder joints modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and modelling of a digital MEMS varactor for wireless applications Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach Hybrid dynamic modeling of V-shaped thermal micro-actuators A systematic approach for reliability assessment of electrolytic capacitor-free LED drivers Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1