基于模糊空间关系的粒子滤波目标跟踪

Nicolas Widynski, Séverine Dubuisson, I. Bloch
{"title":"基于模糊空间关系的粒子滤波目标跟踪","authors":"Nicolas Widynski, Séverine Dubuisson, I. Bloch","doi":"10.1109/IPTA.2010.5586806","DOIUrl":null,"url":null,"abstract":"Dynamics modeling is of primal interest to track objects using particle filters. Even the choice of a well fitted noise parameter may lead to unsuccessful tracking when unexpected events arise, such as outliers, occultations, dynamics discontinuites… In this paper, we propose to introduce structural spatial information in particle filters. This information, expressed as spatial relations such as orientation or distance, is modeled in a fuzzy set framework, and is introduced in the dynamics in order to model the potential changes from one instant to the next one. The fuzzy modeling provides flexibility both in the semantics of the relations and in the transitions from one relation to another one. We show in our experiments that this kind of modeling is really adaptive to unexpected changes of dynamics, and outperforms classical filtering techniques while using only a small number of particles.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"1999 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle filtering with fuzzy spatial relations for object tracking\",\"authors\":\"Nicolas Widynski, Séverine Dubuisson, I. Bloch\",\"doi\":\"10.1109/IPTA.2010.5586806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamics modeling is of primal interest to track objects using particle filters. Even the choice of a well fitted noise parameter may lead to unsuccessful tracking when unexpected events arise, such as outliers, occultations, dynamics discontinuites… In this paper, we propose to introduce structural spatial information in particle filters. This information, expressed as spatial relations such as orientation or distance, is modeled in a fuzzy set framework, and is introduced in the dynamics in order to model the potential changes from one instant to the next one. The fuzzy modeling provides flexibility both in the semantics of the relations and in the transitions from one relation to another one. We show in our experiments that this kind of modeling is really adaptive to unexpected changes of dynamics, and outperforms classical filtering techniques while using only a small number of particles.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"1999 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态建模是使用粒子滤波器跟踪对象的主要兴趣。当出现异常点、掩星、动态不连续等突发事件时,即使选择了拟合良好的噪声参数,也可能导致跟踪失败。这些以空间关系(如方向或距离)表示的信息在模糊集框架中建模,并被引入到动力学中,以模拟从一个瞬间到下一个瞬间的潜在变化。模糊建模在关系的语义和从一个关系到另一个关系的转换方面都提供了灵活性。我们在实验中表明,这种建模确实能够适应意想不到的动态变化,并且在仅使用少量粒子的情况下优于经典滤波技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle filtering with fuzzy spatial relations for object tracking
Dynamics modeling is of primal interest to track objects using particle filters. Even the choice of a well fitted noise parameter may lead to unsuccessful tracking when unexpected events arise, such as outliers, occultations, dynamics discontinuites… In this paper, we propose to introduce structural spatial information in particle filters. This information, expressed as spatial relations such as orientation or distance, is modeled in a fuzzy set framework, and is introduced in the dynamics in order to model the potential changes from one instant to the next one. The fuzzy modeling provides flexibility both in the semantics of the relations and in the transitions from one relation to another one. We show in our experiments that this kind of modeling is really adaptive to unexpected changes of dynamics, and outperforms classical filtering techniques while using only a small number of particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1