基于复杂卷积神经网络的GF-3 PolSAR海洋水产养殖识别

Jianchao Fan, Xinxin Wang, Xiang Wang, Xiaoxin Liu, Jianhua Zhao, Qinghui Meng
{"title":"基于复杂卷积神经网络的GF-3 PolSAR海洋水产养殖识别","authors":"Jianchao Fan, Xinxin Wang, Xiang Wang, Xiaoxin Liu, Jianhua Zhao, Qinghui Meng","doi":"10.1109/ICICIP47338.2019.9012171","DOIUrl":null,"url":null,"abstract":"Marine floating raft aquaculture is widely distributed along the coast in China. Polarimetric synthetic aperture radar (PoISAR) images can distinguish marine aquaculture targets from sea water background, but optical satellite remote sensing images cannot detect these effectively and completely. In this paper, considering the complex character of PoISAR data, a complex-value convolutional neural network is utilized for marine aquaculture recognition, which makes the most of phase information implicit in original complex data to improve detection accuracy. Experiments on actual GF-3 PoISAR images substantiate the effectiveness of the proposed approach.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"94 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GF-3 PolSAR Marine Aquaculture Recognition Based on Complex Convolutional Neural Networks\",\"authors\":\"Jianchao Fan, Xinxin Wang, Xiang Wang, Xiaoxin Liu, Jianhua Zhao, Qinghui Meng\",\"doi\":\"10.1109/ICICIP47338.2019.9012171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine floating raft aquaculture is widely distributed along the coast in China. Polarimetric synthetic aperture radar (PoISAR) images can distinguish marine aquaculture targets from sea water background, but optical satellite remote sensing images cannot detect these effectively and completely. In this paper, considering the complex character of PoISAR data, a complex-value convolutional neural network is utilized for marine aquaculture recognition, which makes the most of phase information implicit in original complex data to improve detection accuracy. Experiments on actual GF-3 PoISAR images substantiate the effectiveness of the proposed approach.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"94 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海洋浮筏养殖在中国沿海地区广泛分布。极化合成孔径雷达(PoISAR)图像可以将海水养殖目标与海水背景区分开来,但光学卫星遥感图像无法有效、完整地检测这些目标。本文针对PoISAR数据的复杂性特点,利用复值卷积神经网络进行海水养殖识别,充分利用原始复杂数据中隐含的相位信息,提高检测精度。在实际GF-3 PoISAR图像上的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GF-3 PolSAR Marine Aquaculture Recognition Based on Complex Convolutional Neural Networks
Marine floating raft aquaculture is widely distributed along the coast in China. Polarimetric synthetic aperture radar (PoISAR) images can distinguish marine aquaculture targets from sea water background, but optical satellite remote sensing images cannot detect these effectively and completely. In this paper, considering the complex character of PoISAR data, a complex-value convolutional neural network is utilized for marine aquaculture recognition, which makes the most of phase information implicit in original complex data to improve detection accuracy. Experiments on actual GF-3 PoISAR images substantiate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1