ERDSE:资源有限平台上基于高效强化学习的CNN加速器设计空间探索方法

Kaijie Feng, Xiaoya Fan, Jianfeng An, Xiping Wang, Kaiyue Di, Jiangfei Li, Minghao Lu, Chuxi Li
{"title":"ERDSE:资源有限平台上基于高效强化学习的CNN加速器设计空间探索方法","authors":"Kaijie Feng,&nbsp;Xiaoya Fan,&nbsp;Jianfeng An,&nbsp;Xiping Wang,&nbsp;Kaiyue Di,&nbsp;Jiangfei Li,&nbsp;Minghao Lu,&nbsp;Chuxi Li","doi":"10.1016/j.gvc.2021.200024","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional Neural Network (CNN) accelerator design on resource limited platform faces the challenge of lacking efficient design space exploration (DSE) method because of its huge and irregular design space. Numerous parameters belong to accelerator architecture and dataflow mode jointly construct a huge design space while power and resource constrains make the design space become quite irregular. Under such circumstances, traditional DSE methods based on exhaustive search is infeasible for the non-trivial design space and methods based on general optimization algorithms will also be inefficient because of the irregular distribution of design points. In this paper, we provide an efficient DSE method named ERDSE for CNN accelerator design on resource limited platform. ERDSE is based on reinforcement learning algorithm REINFORCE but refines it to adapt the complex design space. ERDSE implements off-policy strategy to decouple sampling and learning phase, then separately refines them to further improve exploration ability and samples utilization. We implement ERDSE to optimize the computing latency of CNN accelerator for VGG-16 and MobileNet-V3. Under the tightest constraints, ERDSE achieves 1.2x-1.7x (on VGG-16) and 2.3-4.9x (on MobileNet-V3) latency improvement compared with other DSE methods, which demonstrates the efficiency of ERDSE.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"4 ","pages":"Article 200024"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gvc.2021.200024","citationCount":"2","resultStr":"{\"title\":\"ERDSE: efficient reinforcement learning based design space exploration method for CNN accelerator on resource limited platform\",\"authors\":\"Kaijie Feng,&nbsp;Xiaoya Fan,&nbsp;Jianfeng An,&nbsp;Xiping Wang,&nbsp;Kaiyue Di,&nbsp;Jiangfei Li,&nbsp;Minghao Lu,&nbsp;Chuxi Li\",\"doi\":\"10.1016/j.gvc.2021.200024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convolutional Neural Network (CNN) accelerator design on resource limited platform faces the challenge of lacking efficient design space exploration (DSE) method because of its huge and irregular design space. Numerous parameters belong to accelerator architecture and dataflow mode jointly construct a huge design space while power and resource constrains make the design space become quite irregular. Under such circumstances, traditional DSE methods based on exhaustive search is infeasible for the non-trivial design space and methods based on general optimization algorithms will also be inefficient because of the irregular distribution of design points. In this paper, we provide an efficient DSE method named ERDSE for CNN accelerator design on resource limited platform. ERDSE is based on reinforcement learning algorithm REINFORCE but refines it to adapt the complex design space. ERDSE implements off-policy strategy to decouple sampling and learning phase, then separately refines them to further improve exploration ability and samples utilization. We implement ERDSE to optimize the computing latency of CNN accelerator for VGG-16 and MobileNet-V3. Under the tightest constraints, ERDSE achieves 1.2x-1.7x (on VGG-16) and 2.3-4.9x (on MobileNet-V3) latency improvement compared with other DSE methods, which demonstrates the efficiency of ERDSE.</p></div>\",\"PeriodicalId\":100592,\"journal\":{\"name\":\"Graphics and Visual Computing\",\"volume\":\"4 \",\"pages\":\"Article 200024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gvc.2021.200024\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphics and Visual Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666629421000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629421000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在资源有限的平台上,卷积神经网络(CNN)加速器设计由于其巨大且不规则的设计空间而面临缺乏有效的设计空间探索(DSE)方法的挑战。加速器架构和数据流模式下的众多参数共同构成了巨大的设计空间,而功率和资源的限制使得设计空间变得非常不规则。在这种情况下,传统的基于穷举搜索的DSE方法对于非平凡设计空间是不可行的,而基于一般优化算法的方法也会因为设计点的不规则分布而效率低下。在资源有限的平台上,为CNN加速器设计提供了一种高效的DSE方法——ERDSE。ERDSE是在强化学习算法的基础上对其进行强化和细化,以适应复杂的设计空间。ERDSE采用脱策略策略将采样和学习阶段解耦,然后分别对其进行细化,进一步提高探测能力和样本利用率。为了优化VGG-16和MobileNet-V3的CNN加速器的计算延迟,我们实现了ERDSE。在最严格的约束条件下,与其他DSE方法相比,ERDSE的延迟提高了1.2 -1.7倍(在VGG-16上),2.3-4.9倍(在MobileNet-V3上),这表明了ERDSE的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ERDSE: efficient reinforcement learning based design space exploration method for CNN accelerator on resource limited platform

Convolutional Neural Network (CNN) accelerator design on resource limited platform faces the challenge of lacking efficient design space exploration (DSE) method because of its huge and irregular design space. Numerous parameters belong to accelerator architecture and dataflow mode jointly construct a huge design space while power and resource constrains make the design space become quite irregular. Under such circumstances, traditional DSE methods based on exhaustive search is infeasible for the non-trivial design space and methods based on general optimization algorithms will also be inefficient because of the irregular distribution of design points. In this paper, we provide an efficient DSE method named ERDSE for CNN accelerator design on resource limited platform. ERDSE is based on reinforcement learning algorithm REINFORCE but refines it to adapt the complex design space. ERDSE implements off-policy strategy to decouple sampling and learning phase, then separately refines them to further improve exploration ability and samples utilization. We implement ERDSE to optimize the computing latency of CNN accelerator for VGG-16 and MobileNet-V3. Under the tightest constraints, ERDSE achieves 1.2x-1.7x (on VGG-16) and 2.3-4.9x (on MobileNet-V3) latency improvement compared with other DSE methods, which demonstrates the efficiency of ERDSE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Geometric models for plant leaf area estimation from 3D point clouds: A comparative study Efficient structuring of the latent space for controllable data reconstruction and compression Locally-guided neural denoising Editorial Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1