基于opencl的YOLOv2可扩展FPGA加速器

Ke Xu, Xiaoyun Wang, Dong Wang
{"title":"基于opencl的YOLOv2可扩展FPGA加速器","authors":"Ke Xu, Xiaoyun Wang, Dong Wang","doi":"10.1109/FCCM.2019.00058","DOIUrl":null,"url":null,"abstract":"This paper implements an OpenCL-based FPGA accelerator for YOLOv2 on Arria-10 GX1150 FPGA board. The hardware architecture adopts a scalable pipeline design to support multi-resolution input image, and improves resource utilization by full 8-bit fixed-point computation and CONV+BN+Leaky-ReLU layer fusion technology. The proposed design achieves a peak throughput of 566 GOPs under 190 MHz working frequency. The accelerator could run YOLOv2 inference with 288×288 input resolution and tiny YOLOv2 with 416×416 input resolution at the speed of 35 and 71 FPS, respectively.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Scalable OpenCL-Based FPGA Accelerator for YOLOv2\",\"authors\":\"Ke Xu, Xiaoyun Wang, Dong Wang\",\"doi\":\"10.1109/FCCM.2019.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper implements an OpenCL-based FPGA accelerator for YOLOv2 on Arria-10 GX1150 FPGA board. The hardware architecture adopts a scalable pipeline design to support multi-resolution input image, and improves resource utilization by full 8-bit fixed-point computation and CONV+BN+Leaky-ReLU layer fusion technology. The proposed design achieves a peak throughput of 566 GOPs under 190 MHz working frequency. The accelerator could run YOLOv2 inference with 288×288 input resolution and tiny YOLOv2 with 416×416 input resolution at the speed of 35 and 71 FPS, respectively.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文在Arria-10 GX1150 FPGA板上实现了基于opencl的YOLOv2加速卡。硬件架构采用可扩展的管道设计,支持多分辨率输入图像,并通过全8位定点计算和CONV+BN+Leaky-ReLU层融合技术提高资源利用率。提出的设计在190 MHz工作频率下实现了566 GOPs的峰值吞吐量。该加速器可以分别以35 FPS和71 FPS的速度运行输入分辨率为288×288的YOLOv2推理和输入分辨率为416×416的微型YOLOv2推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scalable OpenCL-Based FPGA Accelerator for YOLOv2
This paper implements an OpenCL-based FPGA accelerator for YOLOv2 on Arria-10 GX1150 FPGA board. The hardware architecture adopts a scalable pipeline design to support multi-resolution input image, and improves resource utilization by full 8-bit fixed-point computation and CONV+BN+Leaky-ReLU layer fusion technology. The proposed design achieves a peak throughput of 566 GOPs under 190 MHz working frequency. The accelerator could run YOLOv2 inference with 288×288 input resolution and tiny YOLOv2 with 416×416 input resolution at the speed of 35 and 71 FPS, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1