用因果关系丰富本体

Amaal Saleh Hassan Al Hashimy, N. Kulathuramaiyer
{"title":"用因果关系丰富本体","authors":"Amaal Saleh Hassan Al Hashimy, N. Kulathuramaiyer","doi":"10.1109/SPC.2013.6735129","DOIUrl":null,"url":null,"abstract":"Ontology learning is considered a potential approach that can help to reduce the bottleneck of knowledge acquisition. However it suffers from a lack of standards to define concepts, besides the lack of fully automatic knowledge acquisition methods. In performing this learning process, the discovery of non-taxonomic relationships has been identified as being the most difficult. This study is then an attempt to create an enhanced framework for discovering and classifying ontological relationships by using a machine learning strategy. We take into consideration the context of the input text in performing the classification of the semantic relations, in particular, causation relations. The proposed framework extracts initial semantic patterns for causation relation from the input samples, then filters these patterns using two novel algorithms, namely, the “Purpose Based Word Sense Disambiguation” which helps in determining the causation senses for input pair of words and the “Graph Based Semantics” which determines the existence of the causation relations in the sentence and to extract their cause-effect parts. The results show a good performance and the implemented framework cut off many steps of the usual process to produce the final results.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ontology enrichment with causation relations\",\"authors\":\"Amaal Saleh Hassan Al Hashimy, N. Kulathuramaiyer\",\"doi\":\"10.1109/SPC.2013.6735129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology learning is considered a potential approach that can help to reduce the bottleneck of knowledge acquisition. However it suffers from a lack of standards to define concepts, besides the lack of fully automatic knowledge acquisition methods. In performing this learning process, the discovery of non-taxonomic relationships has been identified as being the most difficult. This study is then an attempt to create an enhanced framework for discovering and classifying ontological relationships by using a machine learning strategy. We take into consideration the context of the input text in performing the classification of the semantic relations, in particular, causation relations. The proposed framework extracts initial semantic patterns for causation relation from the input samples, then filters these patterns using two novel algorithms, namely, the “Purpose Based Word Sense Disambiguation” which helps in determining the causation senses for input pair of words and the “Graph Based Semantics” which determines the existence of the causation relations in the sentence and to extract their cause-effect parts. The results show a good performance and the implemented framework cut off many steps of the usual process to produce the final results.\",\"PeriodicalId\":198247,\"journal\":{\"name\":\"2013 IEEE Conference on Systems, Process & Control (ICSPC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Systems, Process & Control (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPC.2013.6735129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本体学习被认为是一种潜在的方法,可以帮助减少知识获取的瓶颈。然而,除了缺乏全自动的知识获取方法外,它还缺乏定义概念的标准。在进行这一学习过程中,发现非分类学关系被认为是最困难的。然后,本研究试图通过使用机器学习策略创建一个增强的框架,用于发现和分类本体关系。在进行语义关系的分类时,我们考虑了输入文本的上下文,特别是因果关系。该框架从输入样本中提取因果关系的初始语义模式,然后使用“基于目的的词义消歧”算法和“基于图的语义”算法对这些模式进行过滤,“基于目的的词义消歧”算法用于确定输入对单词的因果关系,“基于图的语义”算法用于确定句子中因果关系的存在并提取其因果部分。结果显示了良好的性能,并且实现的框架省去了产生最终结果的通常过程的许多步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontology enrichment with causation relations
Ontology learning is considered a potential approach that can help to reduce the bottleneck of knowledge acquisition. However it suffers from a lack of standards to define concepts, besides the lack of fully automatic knowledge acquisition methods. In performing this learning process, the discovery of non-taxonomic relationships has been identified as being the most difficult. This study is then an attempt to create an enhanced framework for discovering and classifying ontological relationships by using a machine learning strategy. We take into consideration the context of the input text in performing the classification of the semantic relations, in particular, causation relations. The proposed framework extracts initial semantic patterns for causation relation from the input samples, then filters these patterns using two novel algorithms, namely, the “Purpose Based Word Sense Disambiguation” which helps in determining the causation senses for input pair of words and the “Graph Based Semantics” which determines the existence of the causation relations in the sentence and to extract their cause-effect parts. The results show a good performance and the implemented framework cut off many steps of the usual process to produce the final results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive intelligent spider robot A simple statistical analysis approach for Intrusion Detection System The Brain function index as a depth of anesthesia indicator using complexity measures Optimization of nth order square linear controller in the realm of describing function approach for nonlinear multivariable square system Performance analysis of wavelet transforms for leakage detection in long range pipeline networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1