基于多倍放大输入图像的卷积网络肝癌自动检测

Wei-Che Huang, P. Chung, H. Tsai, N. Chow, Y. Juang, H. Tsai, Shih-Hsuan Lin, Cheng-Hsiung Wang
{"title":"基于多倍放大输入图像的卷积网络肝癌自动检测","authors":"Wei-Che Huang, P. Chung, H. Tsai, N. Chow, Y. Juang, H. Tsai, Shih-Hsuan Lin, Cheng-Hsiung Wang","doi":"10.1109/AICAS.2019.8771535","DOIUrl":null,"url":null,"abstract":"Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic HCC Detection Using Convolutional Network with Multi-Magnification Input Images\",\"authors\":\"Wei-Che Huang, P. Chung, H. Tsai, N. Chow, Y. Juang, H. Tsai, Shih-Hsuan Lin, Cheng-Hsiung Wang\",\"doi\":\"10.1109/AICAS.2019.8771535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

肝癌术后染色组织的病理检查是确定预后因素的重要步骤。传统上,肝癌的检测是由病理学家通过观察整个生物组织来完成的,这导致了繁重的工作量和潜在的误判。因此,病理自动检查的研究在很长一段时间内都很流行。然而,现有的大多数癌症检测方法仅基于单尺度高放大贴片提取细胞水平信息。在肝脏组织中,常见的细胞变化现象如凋亡、坏死、脂肪变性在肿瘤和良性组织中是相似的。因此,当补丁只覆盖了变化的细胞区域,不能提供足够的相邻细胞结构信息时,检测可能会失败。为了解决这一问题,多倍输入的卷积网络架构既可以通过引用高倍率补丁提供细胞水平信息,也可以通过引用低倍率补丁提供细胞结构信息。该检测算法包括两个主要结构:1)通过单独的通用卷积网络分别从高倍和低倍图像中提取细胞水平和细胞结构水平特征映射;2)通过全连接网络对多倍特征进行集成。本文采用VGG16和Inception V4作为基于卷积网络的肝脏肿瘤检测任务。实验结果表明,基于VGG16的多倍放大输入卷积网络在HCC肿瘤检测任务上达到91%的mIOU。此外,通过对单尺度CNN (SSCN)和多尺度CNN (MSCN)方法的比较,MSCN表明,多尺度贴片在HCC分类任务上可以提供更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic HCC Detection Using Convolutional Network with Multi-Magnification Input Images
Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1