Chia-Chi Tsai, L. Liao, Yen-Fu Su, T. Hung, K. Chiang
{"title":"双面电源模块铜凸接可靠性分析","authors":"Chia-Chi Tsai, L. Liao, Yen-Fu Su, T. Hung, K. Chiang","doi":"10.1109/EUROSIME.2015.7103093","DOIUrl":null,"url":null,"abstract":"A high current load may cause the Joule heating, subsequently raising the chip temperature in a conventional power module. Temperature excursion in power chip may generate thermal stress, induce failure and reduce its reliability. Double-sided power module is a crucial structure to provide another heat dissipation path and efficiently reduce chip temperature. This study estimate the thermal and reliability analysis of double-sided power module by using copper bump as an interconnection under different cooling condition. The connection layout can be designed more flexible by using bump interconnection in double-sided power module. The concept of dummy ball also utilized to reduce the mechanical strain or stress of copper bump and improve its reliability in a power module.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability analysis of copper bump interconnection in double-sided power module\",\"authors\":\"Chia-Chi Tsai, L. Liao, Yen-Fu Su, T. Hung, K. Chiang\",\"doi\":\"10.1109/EUROSIME.2015.7103093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high current load may cause the Joule heating, subsequently raising the chip temperature in a conventional power module. Temperature excursion in power chip may generate thermal stress, induce failure and reduce its reliability. Double-sided power module is a crucial structure to provide another heat dissipation path and efficiently reduce chip temperature. This study estimate the thermal and reliability analysis of double-sided power module by using copper bump as an interconnection under different cooling condition. The connection layout can be designed more flexible by using bump interconnection in double-sided power module. The concept of dummy ball also utilized to reduce the mechanical strain or stress of copper bump and improve its reliability in a power module.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability analysis of copper bump interconnection in double-sided power module
A high current load may cause the Joule heating, subsequently raising the chip temperature in a conventional power module. Temperature excursion in power chip may generate thermal stress, induce failure and reduce its reliability. Double-sided power module is a crucial structure to provide another heat dissipation path and efficiently reduce chip temperature. This study estimate the thermal and reliability analysis of double-sided power module by using copper bump as an interconnection under different cooling condition. The connection layout can be designed more flexible by using bump interconnection in double-sided power module. The concept of dummy ball also utilized to reduce the mechanical strain or stress of copper bump and improve its reliability in a power module.