{"title":"滋养细胞侵袭的数学模型","authors":"H. Byrne, M. Chaplain, G. Pettet, D. McElwain","doi":"10.1080/10273669908833026","DOIUrl":null,"url":null,"abstract":"In this paper we present a simple mathematical model to describe the initial phase of placental development during which trophoblast cells invade the uterine tissue as a continuous mass of cells. The key physical variables involved in this crucial stage of mammalian development are assumed to be the invading trophoblast cells, the uterine tissue, trophoblast-derived proteases that degrade the uterine tissue, and protease inhibitors that neutralise the action of the proteases. Numerical simulations presented here are in good qualitative agreement with experimental observations and show how changes in the system parameters influence the rate and degree of trophoblast invasion. In particular we suggest that chemotactic migration is a key feature of trophoblast invasion and that the rate at which proteases are produced is crucial to the successful implantation of the embryo. For example, both insufficient and excess production of the proteases may result in premature halting of the trophoblasts. Such behaviour may represent the pathological condition of failed trophoblast implantation and subsequent spontaneous abortion.","PeriodicalId":294267,"journal":{"name":"Journal of Theoretical Medicine","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Mathematical Model of Trophoblast Invasion\",\"authors\":\"H. Byrne, M. Chaplain, G. Pettet, D. McElwain\",\"doi\":\"10.1080/10273669908833026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a simple mathematical model to describe the initial phase of placental development during which trophoblast cells invade the uterine tissue as a continuous mass of cells. The key physical variables involved in this crucial stage of mammalian development are assumed to be the invading trophoblast cells, the uterine tissue, trophoblast-derived proteases that degrade the uterine tissue, and protease inhibitors that neutralise the action of the proteases. Numerical simulations presented here are in good qualitative agreement with experimental observations and show how changes in the system parameters influence the rate and degree of trophoblast invasion. In particular we suggest that chemotactic migration is a key feature of trophoblast invasion and that the rate at which proteases are produced is crucial to the successful implantation of the embryo. For example, both insufficient and excess production of the proteases may result in premature halting of the trophoblasts. Such behaviour may represent the pathological condition of failed trophoblast implantation and subsequent spontaneous abortion.\",\"PeriodicalId\":294267,\"journal\":{\"name\":\"Journal of Theoretical Medicine\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10273669908833026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10273669908833026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a simple mathematical model to describe the initial phase of placental development during which trophoblast cells invade the uterine tissue as a continuous mass of cells. The key physical variables involved in this crucial stage of mammalian development are assumed to be the invading trophoblast cells, the uterine tissue, trophoblast-derived proteases that degrade the uterine tissue, and protease inhibitors that neutralise the action of the proteases. Numerical simulations presented here are in good qualitative agreement with experimental observations and show how changes in the system parameters influence the rate and degree of trophoblast invasion. In particular we suggest that chemotactic migration is a key feature of trophoblast invasion and that the rate at which proteases are produced is crucial to the successful implantation of the embryo. For example, both insufficient and excess production of the proteases may result in premature halting of the trophoblasts. Such behaviour may represent the pathological condition of failed trophoblast implantation and subsequent spontaneous abortion.