基于扩展模糊c均值聚类算法的脑MRI异常检测与提取

Ranjita Chowdhury, Samarpan Dutta, Pinaki Saha, Diptak Banerjee
{"title":"基于扩展模糊c均值聚类算法的脑MRI异常检测与提取","authors":"Ranjita Chowdhury, Samarpan Dutta, Pinaki Saha, Diptak Banerjee","doi":"10.1109/ICRIEECE44171.2018.9008849","DOIUrl":null,"url":null,"abstract":"Computerized automated detection of brain disorders is complex as it heavily depends upon the imaging technique, shape and size of the brain and resolution of the image. In this paper we are going to give an efficient algorithm to detect and extract abnormality from brain MRI using Extended-FCM and Density-based clustering technique which perfectly separates out the abnormal lesion with lesser number of input parameters required. Our all new extended-FCM proves to be efficient here, as in 92% of the cases it gives clustered output having high Silhouette index in lesser number of iterations. This approach will facilitate automated detection of brain diseases in rural and remote areas.","PeriodicalId":393891,"journal":{"name":"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Extraction of Abnormality from Brain MRI Image Using Extended Fuzzy-C-Means Clustering Algorithm\",\"authors\":\"Ranjita Chowdhury, Samarpan Dutta, Pinaki Saha, Diptak Banerjee\",\"doi\":\"10.1109/ICRIEECE44171.2018.9008849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computerized automated detection of brain disorders is complex as it heavily depends upon the imaging technique, shape and size of the brain and resolution of the image. In this paper we are going to give an efficient algorithm to detect and extract abnormality from brain MRI using Extended-FCM and Density-based clustering technique which perfectly separates out the abnormal lesion with lesser number of input parameters required. Our all new extended-FCM proves to be efficient here, as in 92% of the cases it gives clustered output having high Silhouette index in lesser number of iterations. This approach will facilitate automated detection of brain diseases in rural and remote areas.\",\"PeriodicalId\":393891,\"journal\":{\"name\":\"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRIEECE44171.2018.9008849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIEECE44171.2018.9008849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑部疾病的计算机自动检测是复杂的,因为它在很大程度上取决于成像技术、大脑的形状和大小以及图像的分辨率。本文提出了一种基于扩展fcm和基于密度的聚类技术的脑MRI异常检测和提取算法,该算法可以在较少输入参数的情况下完美地分离出异常病灶。我们全新的扩展fcm在这里被证明是有效的,因为在92%的情况下,它在较少的迭代次数下提供具有高廓形指数的聚类输出。这种方法将有助于在农村和偏远地区自动检测脑部疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Extraction of Abnormality from Brain MRI Image Using Extended Fuzzy-C-Means Clustering Algorithm
Computerized automated detection of brain disorders is complex as it heavily depends upon the imaging technique, shape and size of the brain and resolution of the image. In this paper we are going to give an efficient algorithm to detect and extract abnormality from brain MRI using Extended-FCM and Density-based clustering technique which perfectly separates out the abnormal lesion with lesser number of input parameters required. Our all new extended-FCM proves to be efficient here, as in 92% of the cases it gives clustered output having high Silhouette index in lesser number of iterations. This approach will facilitate automated detection of brain diseases in rural and remote areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranked Rule Based Approach for Sentiment Analysis Design of Evaluation Board for Image Processing ASIC and VHDL Implementation of FPGA Interface Design and Development of IoT based System for Retrieval of Agrometeorological Parameters An Advance Tree Adaptive Data Classification for the Diabetes Disease Prediction Dual-Frequency GPS Derived Precipitable Water Vapor and Comparison with ERA-Interim Reanalysis Data Over Indian stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1