PLM-IPE:一个用于隐式偏好估计的像素里程碑式相互增强框架

Federico Becattini, Xuemeng Song, C. Baecchi, S. Fang, C. Ferrari, Liqiang Nie, A. del Bimbo
{"title":"PLM-IPE:一个用于隐式偏好估计的像素里程碑式相互增强框架","authors":"Federico Becattini, Xuemeng Song, C. Baecchi, S. Fang, C. Ferrari, Liqiang Nie, A. del Bimbo","doi":"10.1145/3469877.3490621","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user’s implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PLM-IPE: A Pixel-Landmark Mutual Enhanced Framework for Implicit Preference Estimation\",\"authors\":\"Federico Becattini, Xuemeng Song, C. Baecchi, S. Fang, C. Ferrari, Liqiang Nie, A. del Bimbo\",\"doi\":\"10.1145/3469877.3490621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user’s implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们感兴趣的是了解客户如何感知时尚建议,特别是当观察拟议的服装组合以组成一套服装时。实际上,在没有任何主动参与的情况下,自动理解建议的项目是如何被感知的,这是实现交互式应用程序的重要组成部分。我们提出了一个像素里程碑式的相互增强框架,用于隐式偏好估计,命名为PLM-IPE,它能够利用视觉线索推断用户的隐式偏好,而无需任何主动或有意识的参与。PLM-IPE包括三个关键模块:基于像素的估计器、基于地标的估计器和基于相互学习的优化。前两个模块分别从像素级和地标级捕捉用户的隐式反应。最后一个模块用于在两个并行估计器之间传递知识。为了进行评估,我们收集了一个名为SentiGarment的真实世界数据集,其中包含3345个面部反应视频,以及建议的服装和人类标记的反应分数。大量的实验表明,我们的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLM-IPE: A Pixel-Landmark Mutual Enhanced Framework for Implicit Preference Estimation
In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user’s implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1