{"title":"柔性电子器件变形诱发应力的一般方法","authors":"Heetaek Lim, S. Kong, E. Guichard, A. Hoessinger","doi":"10.1109/SISPAD.2018.8551752","DOIUrl":null,"url":null,"abstract":"We present a simulation approach that is based on non-linear finite element method. This simulation flow allows to calculate large deformation field and associated stress and strain. The obtained simulation result agrees well with analytic solution. We extend this simulation method to evaluate the impacts of the deformation induced stress on device performance as well as structural integrity.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A General Approach for Deformation Induced Stress on Flexible Electronics\",\"authors\":\"Heetaek Lim, S. Kong, E. Guichard, A. Hoessinger\",\"doi\":\"10.1109/SISPAD.2018.8551752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simulation approach that is based on non-linear finite element method. This simulation flow allows to calculate large deformation field and associated stress and strain. The obtained simulation result agrees well with analytic solution. We extend this simulation method to evaluate the impacts of the deformation induced stress on device performance as well as structural integrity.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A General Approach for Deformation Induced Stress on Flexible Electronics
We present a simulation approach that is based on non-linear finite element method. This simulation flow allows to calculate large deformation field and associated stress and strain. The obtained simulation result agrees well with analytic solution. We extend this simulation method to evaluate the impacts of the deformation induced stress on device performance as well as structural integrity.