宫颈涂片图像中正常上皮细胞的特征分析

Rahadian Kurniawan, Dhomas Hatta Fudholi, I. Muhimmah, A. Kurniawardhani, Indrayanti
{"title":"宫颈涂片图像中正常上皮细胞的特征分析","authors":"Rahadian Kurniawan, Dhomas Hatta Fudholi, I. Muhimmah, A. Kurniawardhani, Indrayanti","doi":"10.1109/ICICOS.2018.8621670","DOIUrl":null,"url":null,"abstract":"We evaluate the characteristic of the normal epithelial cervical cell in Pap Smear images, using feature analysis. The evaluation affects the determination of proper pap smear image determination. This study aims to analyze the performance of feature selection on data classification and discovering features which significantly affect the classification of the normal epithelial cervical cell. Feature selection process has been done to 54 features in the nuclei area and the cytoplasm of the cervical epithelial cell, using Feature Subset Selection. Furthermore, we compare the performance of two classification methods: K-Nearest Neighbors (KNN) and Backpropagation. Both methods resulting in the same 12 features to differentiate between normal cervical cells. The classification accuracies for both methods are 92.29% for KNN and 91.51% for Backpropagation.","PeriodicalId":438473,"journal":{"name":"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Analysis of Normal Epithelial Cervical Cell Characteristics in Pap Smear Images\",\"authors\":\"Rahadian Kurniawan, Dhomas Hatta Fudholi, I. Muhimmah, A. Kurniawardhani, Indrayanti\",\"doi\":\"10.1109/ICICOS.2018.8621670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the characteristic of the normal epithelial cervical cell in Pap Smear images, using feature analysis. The evaluation affects the determination of proper pap smear image determination. This study aims to analyze the performance of feature selection on data classification and discovering features which significantly affect the classification of the normal epithelial cervical cell. Feature selection process has been done to 54 features in the nuclei area and the cytoplasm of the cervical epithelial cell, using Feature Subset Selection. Furthermore, we compare the performance of two classification methods: K-Nearest Neighbors (KNN) and Backpropagation. Both methods resulting in the same 12 features to differentiate between normal cervical cells. The classification accuracies for both methods are 92.29% for KNN and 91.51% for Backpropagation.\",\"PeriodicalId\":438473,\"journal\":{\"name\":\"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICOS.2018.8621670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICOS.2018.8621670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们评估的特点,正常上皮宫颈细胞在巴氏涂片图像,使用特征分析。评价影响了正确的巴氏涂片图像测定。本研究旨在分析特征选择在数据分类上的表现,发现对宫颈正常上皮细胞分类有显著影响的特征。利用特征子集选择方法对宫颈上皮细胞核区和细胞质中的54个特征进行了特征选择。此外,我们比较了两种分类方法的性能:k近邻(KNN)和反向传播(Backpropagation)。两种方法产生相同的12个特征来区分正常宫颈细胞。两种方法对KNN和反向传播的分类准确率分别为92.29%和91.51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Analysis of Normal Epithelial Cervical Cell Characteristics in Pap Smear Images
We evaluate the characteristic of the normal epithelial cervical cell in Pap Smear images, using feature analysis. The evaluation affects the determination of proper pap smear image determination. This study aims to analyze the performance of feature selection on data classification and discovering features which significantly affect the classification of the normal epithelial cervical cell. Feature selection process has been done to 54 features in the nuclei area and the cytoplasm of the cervical epithelial cell, using Feature Subset Selection. Furthermore, we compare the performance of two classification methods: K-Nearest Neighbors (KNN) and Backpropagation. Both methods resulting in the same 12 features to differentiate between normal cervical cells. The classification accuracies for both methods are 92.29% for KNN and 91.51% for Backpropagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing Website E-Learning Based on Integration of Technology Enhance Learning and Human Computer Interaction Copyright A Distributional Model of Sensitive Values on p-Sensitive in Multiple Sensitive Attributes Real-time Detection of Data Completeness Degree for Traffic Simulation Using Text Similarity and Time Relevance of Data from Social Media Implementation of e-New Local Search based Multiobjective Optimization Algorithm and Multiobjective Co-variance based Artificial Bee Colony Algorithm in Stocks Portfolio Optimization Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1