混合同步/异步行为的综合方法

Tsung-Yi Wu, Tzu-Chieh Tien, A. Wu, Y. Lin
{"title":"混合同步/异步行为的综合方法","authors":"Tsung-Yi Wu, Tzu-Chieh Tien, A. Wu, Y. Lin","doi":"10.1109/EDTC.1994.326864","DOIUrl":null,"url":null,"abstract":"We propose a method for synthesizing from a behavioral description in a hardware description language. The description provides two mechanisms/spl minus/edge-triggered and level-sensitive/spl minus/for process synchronization and interface designs, which characterize most control-dominated circuits. They are usually asynchronous with the system clock. Conventional control-step-based, scheduling-and-allocation approaches for high-level synthesis are implicitly synchronous and, therefore, cannot correctly produce a structure that exhibits the exact (timing) behavior in the presence of such asynchrony. We construct first a mixed synchronous/asynchronous state graph to capture the described behavior. Then, according to a set of rules, our algorithm transforms the graph into a completely synchronous one, from which synthesis to structure has been proven easy. Simulation of a number of circuits has confirmed that the synthesized structures exhibit identical behavior (in terms of both functionality and timing) as the original description.<<ETX>>","PeriodicalId":244297,"journal":{"name":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A synthesis method for mixed synchronous/asynchronous behavior\",\"authors\":\"Tsung-Yi Wu, Tzu-Chieh Tien, A. Wu, Y. Lin\",\"doi\":\"10.1109/EDTC.1994.326864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for synthesizing from a behavioral description in a hardware description language. The description provides two mechanisms/spl minus/edge-triggered and level-sensitive/spl minus/for process synchronization and interface designs, which characterize most control-dominated circuits. They are usually asynchronous with the system clock. Conventional control-step-based, scheduling-and-allocation approaches for high-level synthesis are implicitly synchronous and, therefore, cannot correctly produce a structure that exhibits the exact (timing) behavior in the presence of such asynchrony. We construct first a mixed synchronous/asynchronous state graph to capture the described behavior. Then, according to a set of rules, our algorithm transforms the graph into a completely synchronous one, from which synthesis to structure has been proven easy. Simulation of a number of circuits has confirmed that the synthesized structures exhibit identical behavior (in terms of both functionality and timing) as the original description.<<ETX>>\",\"PeriodicalId\":244297,\"journal\":{\"name\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTC.1994.326864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1994.326864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种从硬件描述语言中的行为描述进行综合的方法。该描述提供了两种机制/减spl /边缘触发和电平敏感/减spl /用于过程同步和接口设计,这是大多数控制主导电路的特征。它们通常与系统时钟是异步的。用于高级综合的传统的基于控制步骤的调度和分配方法是隐式同步的,因此,不能正确地生成在存在这种异步时显示精确(定时)行为的结构。我们首先构造一个混合同步/异步状态图来捕获所描述的行为。然后,我们的算法根据一套规则将图转换成一个完全同步的图,证明了从合成到结构的简单性。许多电路的仿真已经证实,合成的结构表现出与原始描述相同的行为(在功能和时序方面)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A synthesis method for mixed synchronous/asynchronous behavior
We propose a method for synthesizing from a behavioral description in a hardware description language. The description provides two mechanisms/spl minus/edge-triggered and level-sensitive/spl minus/for process synchronization and interface designs, which characterize most control-dominated circuits. They are usually asynchronous with the system clock. Conventional control-step-based, scheduling-and-allocation approaches for high-level synthesis are implicitly synchronous and, therefore, cannot correctly produce a structure that exhibits the exact (timing) behavior in the presence of such asynchrony. We construct first a mixed synchronous/asynchronous state graph to capture the described behavior. Then, according to a set of rules, our algorithm transforms the graph into a completely synchronous one, from which synthesis to structure has been proven easy. Simulation of a number of circuits has confirmed that the synthesized structures exhibit identical behavior (in terms of both functionality and timing) as the original description.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of simple genetic algorithms to sequential circuit test generation Efficient implementations of self-checking multiply and divide arrays A reduced-swing data transmission scheme for resistive bus lines in VLSIs Genesis: a behavioral synthesis system for hierarchical testability Nondeterministic finite-state machines and sequential don't cares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1