用于自闭症研究的人脑频域分析

Hossam Abd, El Munim, Alya Farag, Manuel F. Casanova
{"title":"用于自闭症研究的人脑频域分析","authors":"Hossam Abd, El Munim, Alya Farag, Manuel F. Casanova","doi":"10.1109/ISSPIT.2007.4458177","DOIUrl":null,"url":null,"abstract":"Geometric analysis of normal and autistic human subjects reveal distinctions in deformations in the corpus callosum (CC) that may be used for image analysis-based studies of autism. Preliminary studies showed that the CC of autistic patients is quite distinct from normal controls. We use an implicit vector representation of CC to carry out the registration process which reduces the pose differences between the CC's models. Then the complex Fourier descriptor analysis is used to extract a feature vector of each CC model. This feature is used to build a criteria of discrimination between the normal and autistic subjects. This paper introduces a new method for the 2D shape registration problem by matching vector distance functions. A variational frame work is proposed for the global and local registration of CC's. A gradient descent optimization is used which can efficiently handle both the rigid and the non-rigid operations together. The registration of real CC extracted from MRI data sets demonstrates the potential of the proposed approach. Discrimination results will be demonstrated as well to show the efficiency of the discrimination technique.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Frequency-Domain Analysis of the Human Brain for Studies of Autism\",\"authors\":\"Hossam Abd, El Munim, Alya Farag, Manuel F. Casanova\",\"doi\":\"10.1109/ISSPIT.2007.4458177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric analysis of normal and autistic human subjects reveal distinctions in deformations in the corpus callosum (CC) that may be used for image analysis-based studies of autism. Preliminary studies showed that the CC of autistic patients is quite distinct from normal controls. We use an implicit vector representation of CC to carry out the registration process which reduces the pose differences between the CC's models. Then the complex Fourier descriptor analysis is used to extract a feature vector of each CC model. This feature is used to build a criteria of discrimination between the normal and autistic subjects. This paper introduces a new method for the 2D shape registration problem by matching vector distance functions. A variational frame work is proposed for the global and local registration of CC's. A gradient descent optimization is used which can efficiently handle both the rigid and the non-rigid operations together. The registration of real CC extracted from MRI data sets demonstrates the potential of the proposed approach. Discrimination results will be demonstrated as well to show the efficiency of the discrimination technique.\",\"PeriodicalId\":299267,\"journal\":{\"name\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2007.4458177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对正常和自闭症受试者的几何分析揭示了胼胝体(CC)变形的区别,这可能用于基于自闭症的图像分析研究。初步研究表明,自闭症患者的CC与正常对照者截然不同。我们使用隐式的CC向量表示来进行配准过程,从而减少了CC模型之间的位姿差异。然后利用复傅立叶描述子分析提取每个CC模型的特征向量。这个特征被用来建立一个区分正常和自闭症受试者的标准。本文介绍了一种基于矢量距离函数匹配的二维形状配准方法。提出了一种CC全局注册和局部注册的变分框架。采用梯度下降优化,可以有效地同时处理刚性和非刚性操作。从MRI数据集中提取的真实CC的配准证明了所提出方法的潜力。识别结果也将被展示,以显示识别技术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency-Domain Analysis of the Human Brain for Studies of Autism
Geometric analysis of normal and autistic human subjects reveal distinctions in deformations in the corpus callosum (CC) that may be used for image analysis-based studies of autism. Preliminary studies showed that the CC of autistic patients is quite distinct from normal controls. We use an implicit vector representation of CC to carry out the registration process which reduces the pose differences between the CC's models. Then the complex Fourier descriptor analysis is used to extract a feature vector of each CC model. This feature is used to build a criteria of discrimination between the normal and autistic subjects. This paper introduces a new method for the 2D shape registration problem by matching vector distance functions. A variational frame work is proposed for the global and local registration of CC's. A gradient descent optimization is used which can efficiently handle both the rigid and the non-rigid operations together. The registration of real CC extracted from MRI data sets demonstrates the potential of the proposed approach. Discrimination results will be demonstrated as well to show the efficiency of the discrimination technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1