{"title":"复杂网络中的重叠社区检测","authors":"C. Pizzuti","doi":"10.1145/1569901.1570019","DOIUrl":null,"url":null,"abstract":"Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Overlapped community detection in complex networks\",\"authors\":\"C. Pizzuti\",\"doi\":\"10.1145/1569901.1570019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overlapped community detection in complex networks
Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.