复杂网络中的重叠社区检测

C. Pizzuti
{"title":"复杂网络中的重叠社区检测","authors":"C. Pizzuti","doi":"10.1145/1569901.1570019","DOIUrl":null,"url":null,"abstract":"Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Overlapped community detection in complex networks\",\"authors\":\"C. Pizzuti\",\"doi\":\"10.1145/1569901.1570019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

复杂网络中群落结构的提取和理解是近年来研究最多的问题之一。在本文中,我们提出了一种基于遗传的方法来发现重叠群落。该算法通过将适应度函数应用于与网络建模图相对应的线形图上,从而优化出一个能够识别密集连接节点组的适应度函数。该方法以无监督的方式将网络划分为若干组。这个数字由适应度函数的最优值自动确定。在合成网络和现实生活网络上的实验表明,该方法能够成功地检测网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overlapped community detection in complex networks
Extracting and understanding community structure in complex networks is one of the most intensively investigated problems in recent years. In this paper we propose a genetic based approach to discover overlapping communities. The algorithm optimizes a fitness function able to identify densely connected groups of nodes by employing it on the line graph corresponding to the graph modelling the network. The method generates a division of the network in a number of groups in an unsupervised way. This number is automatically determined by the optimal value of the fitness function. Experiments on synthetic and real life networks show the capability of the method to successfully detect the network structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1