复合周期金属-聚合物纳米结构的制备

D. Fajstavr, P. Slepička, V. Švorčík
{"title":"复合周期金属-聚合物纳米结构的制备","authors":"D. Fajstavr, P. Slepička, V. Švorčík","doi":"10.1109/NANO.2018.8626339","DOIUrl":null,"url":null,"abstract":"This paper investigates the preparation of composite metal-polymer nanostructures formed on the surface of polyethersulfone (PES) by an excimer laser beam. Conditions for laser beam modification varied with the laser fluence value and the number of pulses. The samples were further deposited with a layer of metals with a thickness of 5–15 nm and their surface morphology was examined by atomic force microscopy (AFM). Electrical properties of layers were also investigated. Composites prepared by this approach were studied futher for stability under laser modification.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Composite Periodic Metal-Polymer Nanostructures\",\"authors\":\"D. Fajstavr, P. Slepička, V. Švorčík\",\"doi\":\"10.1109/NANO.2018.8626339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the preparation of composite metal-polymer nanostructures formed on the surface of polyethersulfone (PES) by an excimer laser beam. Conditions for laser beam modification varied with the laser fluence value and the number of pulses. The samples were further deposited with a layer of metals with a thickness of 5–15 nm and their surface morphology was examined by atomic force microscopy (AFM). Electrical properties of layers were also investigated. Composites prepared by this approach were studied futher for stability under laser modification.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用准分子激光束在聚醚砜(PES)表面制备复合金属-聚合物纳米结构。激光束的修饰条件随激光能量通量值和脉冲数的变化而变化。在样品表面沉积一层厚度为5 ~ 15 nm的金属层,用原子力显微镜(AFM)观察其表面形貌。研究了各层的电学性能。进一步研究了该方法制备的复合材料在激光修饰下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Composite Periodic Metal-Polymer Nanostructures
This paper investigates the preparation of composite metal-polymer nanostructures formed on the surface of polyethersulfone (PES) by an excimer laser beam. Conditions for laser beam modification varied with the laser fluence value and the number of pulses. The samples were further deposited with a layer of metals with a thickness of 5–15 nm and their surface morphology was examined by atomic force microscopy (AFM). Electrical properties of layers were also investigated. Composites prepared by this approach were studied futher for stability under laser modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1