NISQ量子计算机的实验评估:误差测量、表征和影响

Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Basu Roy, Devesh Tiwari
{"title":"NISQ量子计算机的实验评估:误差测量、表征和影响","authors":"Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Basu Roy, Devesh Tiwari","doi":"10.1109/SC41405.2020.00050","DOIUrl":null,"url":null,"abstract":"Noisy Intermediate-Scale Quantum (NISQ) computers are being increasingly used for executing early-stage quantum programs to establish the practical realizability of existing quantum algorithms. These quantum programs have uses cases in the realm of high-performance computing ranging from molecular chemistry and physics simulations to addressing NP-complete optimization problems. However, NISQ devices are prone to multiple types of errors, which affect the fidelity and reproducibility of the program execution. As the technology is still primitive, our understanding of these quantum machines and their error characteristics is limited. To bridge that understanding gap, this is the first work to provide a systematic and rich experimental evaluation of IBM Quantum Experience (QX) quantum computers of different scales and topologies. Our experimental evaluation uncovers multiple important and interesting aspects of benchmarking and evaluating quantum program on NISQ machines. We have open-sourced our experimental framework and dataset to help accelerate the evaluation of quantum computing systems.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Experimental Evaluation of NISQ Quantum Computers: Error Measurement, Characterization, and Implications\",\"authors\":\"Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Basu Roy, Devesh Tiwari\",\"doi\":\"10.1109/SC41405.2020.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noisy Intermediate-Scale Quantum (NISQ) computers are being increasingly used for executing early-stage quantum programs to establish the practical realizability of existing quantum algorithms. These quantum programs have uses cases in the realm of high-performance computing ranging from molecular chemistry and physics simulations to addressing NP-complete optimization problems. However, NISQ devices are prone to multiple types of errors, which affect the fidelity and reproducibility of the program execution. As the technology is still primitive, our understanding of these quantum machines and their error characteristics is limited. To bridge that understanding gap, this is the first work to provide a systematic and rich experimental evaluation of IBM Quantum Experience (QX) quantum computers of different scales and topologies. Our experimental evaluation uncovers multiple important and interesting aspects of benchmarking and evaluating quantum program on NISQ machines. We have open-sourced our experimental framework and dataset to help accelerate the evaluation of quantum computing systems.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

噪声中等规模量子(NISQ)计算机越来越多地用于执行早期量子程序,以确定现有量子算法的实际可实现性。这些量子程序在高性能计算领域的应用范围从分子化学和物理模拟到解决np完全优化问题。然而,NISQ设备容易出现多种类型的错误,这会影响程序执行的保真度和再现性。由于技术仍然很原始,我们对这些量子机器及其误差特性的理解是有限的。为了弥合这种理解差距,这是第一次对不同规模和拓扑的IBM量子体验(QX)量子计算机进行系统和丰富的实验评估。我们的实验评估揭示了在NISQ机器上对量子程序进行基准测试和评估的多个重要和有趣的方面。我们已经开源了我们的实验框架和数据集,以帮助加速量子计算系统的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Evaluation of NISQ Quantum Computers: Error Measurement, Characterization, and Implications
Noisy Intermediate-Scale Quantum (NISQ) computers are being increasingly used for executing early-stage quantum programs to establish the practical realizability of existing quantum algorithms. These quantum programs have uses cases in the realm of high-performance computing ranging from molecular chemistry and physics simulations to addressing NP-complete optimization problems. However, NISQ devices are prone to multiple types of errors, which affect the fidelity and reproducibility of the program execution. As the technology is still primitive, our understanding of these quantum machines and their error characteristics is limited. To bridge that understanding gap, this is the first work to provide a systematic and rich experimental evaluation of IBM Quantum Experience (QX) quantum computers of different scales and topologies. Our experimental evaluation uncovers multiple important and interesting aspects of benchmarking and evaluating quantum program on NISQ machines. We have open-sourced our experimental framework and dataset to help accelerate the evaluation of quantum computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1