带时间窗车辆路径问题的演化调度图

H. Ozdemir, C. Mohan
{"title":"带时间窗车辆路径问题的演化调度图","authors":"H. Ozdemir, C. Mohan","doi":"10.1109/CEC.2000.870734","DOIUrl":null,"url":null,"abstract":"The vehicle routing problem with time windows (VRPTW) is a very important problem in the transportation industry since it occurs frequently in everyday practice, e.g. in scheduling bank deliveries. Many heuristic algorithms have been proposed for this NP-hard problem. This paper reports the successful application of GrEVeRT (Graph-based Evolutionary algorithm for the Vehicle Routing Problem with Time windows), an evolutionary algorithm based on a directed acyclic graph model. On well-known benchmark instances of the VRPTW, we obtain better results than those reported by other researchers using genetic algorithms.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evolving schedule graphs for the vehicle routing problem with time windows\",\"authors\":\"H. Ozdemir, C. Mohan\",\"doi\":\"10.1109/CEC.2000.870734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vehicle routing problem with time windows (VRPTW) is a very important problem in the transportation industry since it occurs frequently in everyday practice, e.g. in scheduling bank deliveries. Many heuristic algorithms have been proposed for this NP-hard problem. This paper reports the successful application of GrEVeRT (Graph-based Evolutionary algorithm for the Vehicle Routing Problem with Time windows), an evolutionary algorithm based on a directed acyclic graph model. On well-known benchmark instances of the VRPTW, we obtain better results than those reported by other researchers using genetic algorithms.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

带时间窗的车辆路径问题(VRPTW)是交通运输行业中一个非常重要的问题,因为它在日常实践中经常发生,例如安排银行交货。针对这个np困难问题,已经提出了许多启发式算法。本文报道了基于有向无环图模型的进化算法GrEVeRT (graph -based evolution algorithm for the Vehicle Routing Problem with Time window)的成功应用。在已知的VRPTW基准实例上,我们获得了比其他研究人员使用遗传算法报道的更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving schedule graphs for the vehicle routing problem with time windows
The vehicle routing problem with time windows (VRPTW) is a very important problem in the transportation industry since it occurs frequently in everyday practice, e.g. in scheduling bank deliveries. Many heuristic algorithms have been proposed for this NP-hard problem. This paper reports the successful application of GrEVeRT (Graph-based Evolutionary algorithm for the Vehicle Routing Problem with Time windows), an evolutionary algorithm based on a directed acyclic graph model. On well-known benchmark instances of the VRPTW, we obtain better results than those reported by other researchers using genetic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1