基于高效非结构化修剪策略的面向数据流的细粒度稀疏CNN加速器

Tianyang Yu, Bi Wu, Ke Chen, C. Yan, Weiqiang Liu
{"title":"基于高效非结构化修剪策略的面向数据流的细粒度稀疏CNN加速器","authors":"Tianyang Yu, Bi Wu, Ke Chen, C. Yan, Weiqiang Liu","doi":"10.1145/3526241.3530318","DOIUrl":null,"url":null,"abstract":"Network pruning can effectively alleviate the excessive parameters and computation issues in CNNs. However, unstructured pruning is not hardware friendly, while structured pruning will result in a significant loss of accuracy. In this paper, an unstructured fine-grained pruning strategy is proposed and achieves a 16X compression ratio with a top-1 accuracy loss of 1.4% for VGG-16. Combined with the proposed hardware-oriented hyperparameter selection method, compression rates of up to 64X can be obtained while fully meeting the edge-side accuracy requirements. Further, a light-weight, high-performance sparse CNN accelerator with modified systolic array is proposed for pruned VGG-16. The experimental results show that compared with the most advanced design, the proposed accelerator can achieve 21 Frames Per Second (FPS) with 3X better power efficiency and 2.19X better calculation density.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Stream Oriented Fine-grained Sparse CNN Accelerator with Efficient Unstructured Pruning Strategy\",\"authors\":\"Tianyang Yu, Bi Wu, Ke Chen, C. Yan, Weiqiang Liu\",\"doi\":\"10.1145/3526241.3530318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network pruning can effectively alleviate the excessive parameters and computation issues in CNNs. However, unstructured pruning is not hardware friendly, while structured pruning will result in a significant loss of accuracy. In this paper, an unstructured fine-grained pruning strategy is proposed and achieves a 16X compression ratio with a top-1 accuracy loss of 1.4% for VGG-16. Combined with the proposed hardware-oriented hyperparameter selection method, compression rates of up to 64X can be obtained while fully meeting the edge-side accuracy requirements. Further, a light-weight, high-performance sparse CNN accelerator with modified systolic array is proposed for pruned VGG-16. The experimental results show that compared with the most advanced design, the proposed accelerator can achieve 21 Frames Per Second (FPS) with 3X better power efficiency and 2.19X better calculation density.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络修剪可以有效地缓解cnn中参数过多和计算量过大的问题。然而,非结构化修剪是不友好的硬件,而结构化修剪将导致准确性的显著损失。本文提出了一种非结构化的细粒度修剪策略,并对VGG-16实现了16倍的压缩比和1.4%的top-1精度损失。结合所提出的面向硬件的超参数选择方法,可以获得高达64X的压缩率,同时完全满足边缘精度要求。在此基础上,提出了一种基于改良收缩阵列的轻量级高性能稀疏CNN加速器。实验结果表明,与最先进的设计相比,所提出的加速器可以达到21帧每秒(FPS),功率效率提高3倍,计算密度提高2.19倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Stream Oriented Fine-grained Sparse CNN Accelerator with Efficient Unstructured Pruning Strategy
Network pruning can effectively alleviate the excessive parameters and computation issues in CNNs. However, unstructured pruning is not hardware friendly, while structured pruning will result in a significant loss of accuracy. In this paper, an unstructured fine-grained pruning strategy is proposed and achieves a 16X compression ratio with a top-1 accuracy loss of 1.4% for VGG-16. Combined with the proposed hardware-oriented hyperparameter selection method, compression rates of up to 64X can be obtained while fully meeting the edge-side accuracy requirements. Further, a light-weight, high-performance sparse CNN accelerator with modified systolic array is proposed for pruned VGG-16. The experimental results show that compared with the most advanced design, the proposed accelerator can achieve 21 Frames Per Second (FPS) with 3X better power efficiency and 2.19X better calculation density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Power Consumption using Approximate Encoding for CNN Accelerators at the Edge Design and Evaluation of In-Exact Compressor based Approximate Multipliers MOCCA: A Process Variation Tolerant Systolic DNN Accelerator using CNFETs in Monolithic 3D ENTANGLE: An Enhanced Logic-locking Technique for Thwarting SAT and Structural Attacks Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1