基于语义深度强化学习的导航增强拥挤环境下的导航安全

Linh Kästner, Junhui Li, Zhengcheng Shen, Jens Lambrecht
{"title":"基于语义深度强化学习的导航增强拥挤环境下的导航安全","authors":"Linh Kästner, Junhui Li, Zhengcheng Shen, Jens Lambrecht","doi":"10.1109/SSRR56537.2022.10018699","DOIUrl":null,"url":null,"abstract":"Intelligent navigation among social crowds is an essential aspect of mobile robotics for applications such as delivery, health care, or assistance. Deep Reinforcement Learning emerged as an alternative planning method to conservative approaches and promises more efficient and flexible navigation. However, in highly dynamic environments employing different kinds of obstacle classes, safe navigation still presents a grand challenge. In this paper, we propose a semantic Deep-reinforcement-learning-based navigation approach that teaches object-specific safety rules by considering high-level obstacle information. In particular, the agent learns object-specific behavior by contemplating the specific danger zones to enhance safety around vulnerable object classes. We tested the approach against a benchmark obstacle avoidance approach and found an increase in safety. Furthermore, we demonstrate that the agent could learn to navigate more safely by keeping an individual safety distance dependent on the semantic information.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing Navigational Safety in Crowded Environments using Semantic-Deep-Reinforcement-Learning-based Navigation\",\"authors\":\"Linh Kästner, Junhui Li, Zhengcheng Shen, Jens Lambrecht\",\"doi\":\"10.1109/SSRR56537.2022.10018699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent navigation among social crowds is an essential aspect of mobile robotics for applications such as delivery, health care, or assistance. Deep Reinforcement Learning emerged as an alternative planning method to conservative approaches and promises more efficient and flexible navigation. However, in highly dynamic environments employing different kinds of obstacle classes, safe navigation still presents a grand challenge. In this paper, we propose a semantic Deep-reinforcement-learning-based navigation approach that teaches object-specific safety rules by considering high-level obstacle information. In particular, the agent learns object-specific behavior by contemplating the specific danger zones to enhance safety around vulnerable object classes. We tested the approach against a benchmark obstacle avoidance approach and found an increase in safety. Furthermore, we demonstrate that the agent could learn to navigate more safely by keeping an individual safety distance dependent on the semantic information.\",\"PeriodicalId\":272862,\"journal\":{\"name\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR56537.2022.10018699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在社交人群中进行智能导航是移动机器人在递送、医疗保健或辅助等应用中的一个重要方面。深度强化学习作为一种替代保守方法的规划方法出现,并承诺更有效和灵活的导航。然而,在具有不同障碍等级的高动态环境中,安全导航仍然是一个巨大的挑战。在本文中,我们提出了一种基于语义深度强化学习的导航方法,该方法通过考虑高级障碍信息来教授特定对象的安全规则。特别是,代理通过考虑特定的危险区域来学习对象特定的行为,以增强易受攻击对象类周围的安全性。我们将这种方法与基准避障方法进行了测试,发现安全性有所提高。此外,我们证明了智能体可以通过保持依赖于语义信息的个体安全距离来学习更安全的导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Navigational Safety in Crowded Environments using Semantic-Deep-Reinforcement-Learning-based Navigation
Intelligent navigation among social crowds is an essential aspect of mobile robotics for applications such as delivery, health care, or assistance. Deep Reinforcement Learning emerged as an alternative planning method to conservative approaches and promises more efficient and flexible navigation. However, in highly dynamic environments employing different kinds of obstacle classes, safe navigation still presents a grand challenge. In this paper, we propose a semantic Deep-reinforcement-learning-based navigation approach that teaches object-specific safety rules by considering high-level obstacle information. In particular, the agent learns object-specific behavior by contemplating the specific danger zones to enhance safety around vulnerable object classes. We tested the approach against a benchmark obstacle avoidance approach and found an increase in safety. Furthermore, we demonstrate that the agent could learn to navigate more safely by keeping an individual safety distance dependent on the semantic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1