Silvana Ayala, Yuechen Wu, S. Vorndran, Raphael Perci Santiago, R. Kostuk
{"title":"利用分谱法对太阳能热发电系统进行建模与分析,以降低光伏系统的间歇性","authors":"Silvana Ayala, Yuechen Wu, S. Vorndran, Raphael Perci Santiago, R. Kostuk","doi":"10.1117/12.2187071","DOIUrl":null,"url":null,"abstract":"In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting\",\"authors\":\"Silvana Ayala, Yuechen Wu, S. Vorndran, Raphael Perci Santiago, R. Kostuk\",\"doi\":\"10.1117/12.2187071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.\",\"PeriodicalId\":142821,\"journal\":{\"name\":\"SPIE Optics + Photonics for Sustainable Energy\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2187071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们介绍了一种方法来阻尼光伏(PV)系统输出的间歇性由于使用混合PV-thermal - electric (TE)发电系统产生的太阳照度波动。基于PV-TE系统的热力学特性,我们描述了其必要的约束条件。该方法的基础是TE器件的热时间常数比PV电池的长得多。当与优化的储热装置结合使用时,可以补偿由于云层通过而导致的PV输出的短时间间歇性(几分钟)。比较了不同的分光系统,以有效地利用PV和TE转换器之间的入射太阳光谱。采用SMARTS模型辐照度数据计算了带有储热元件的混合PV-TE转换器的时间依赖行为,并与亚利桑那州图森市的实际天气和辐照条件进行了比较。
Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting
In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.