{"title":"基于前向替换的MU-MIMO预编码广义特征值分解处理器","authors":"Chun-An Chen, Chiao-En Chen, Yuan-Hao Huang","doi":"10.1109/SiPS.2017.8109994","DOIUrl":null,"url":null,"abstract":"To improve the spectrum efficiency in wireless communication systems, multiple-input multiple-output (MIMO) technology uses multiple antennas and allows several users to share the same spectrum and antennas by using precoding technique. In the leakage-based precoding technique, generalized eigenvalue decomposition (GEVD) must generate many precoding matrices for all users in the base station to avoid co-channel interference. This paper presents a GEVD algorithm based on forward substitution (FS) scheme to avoid matrix inversion operations. This research also designed and implemented the GEVD processor by using a 40nm CMOS technology. The synthesis results show that the FS-based GEVD processor can reduce area cost by 52% and improve the processing throughput by 12% compared to our previous GEVD [1] processor based on triangular matrix inversion with block multiplication.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forward-substitution-based generalized eigenvalue decomposition processor for MU-MIMO precoding\",\"authors\":\"Chun-An Chen, Chiao-En Chen, Yuan-Hao Huang\",\"doi\":\"10.1109/SiPS.2017.8109994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the spectrum efficiency in wireless communication systems, multiple-input multiple-output (MIMO) technology uses multiple antennas and allows several users to share the same spectrum and antennas by using precoding technique. In the leakage-based precoding technique, generalized eigenvalue decomposition (GEVD) must generate many precoding matrices for all users in the base station to avoid co-channel interference. This paper presents a GEVD algorithm based on forward substitution (FS) scheme to avoid matrix inversion operations. This research also designed and implemented the GEVD processor by using a 40nm CMOS technology. The synthesis results show that the FS-based GEVD processor can reduce area cost by 52% and improve the processing throughput by 12% compared to our previous GEVD [1] processor based on triangular matrix inversion with block multiplication.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8109994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forward-substitution-based generalized eigenvalue decomposition processor for MU-MIMO precoding
To improve the spectrum efficiency in wireless communication systems, multiple-input multiple-output (MIMO) technology uses multiple antennas and allows several users to share the same spectrum and antennas by using precoding technique. In the leakage-based precoding technique, generalized eigenvalue decomposition (GEVD) must generate many precoding matrices for all users in the base station to avoid co-channel interference. This paper presents a GEVD algorithm based on forward substitution (FS) scheme to avoid matrix inversion operations. This research also designed and implemented the GEVD processor by using a 40nm CMOS technology. The synthesis results show that the FS-based GEVD processor can reduce area cost by 52% and improve the processing throughput by 12% compared to our previous GEVD [1] processor based on triangular matrix inversion with block multiplication.