A. Yanamandra, S. Eachempati, N. Soundararajan, N. Vijaykrishnan, M. J. Irwin, R. Krishnan
{"title":"优化电源和性能,实现可靠的片上网络","authors":"A. Yanamandra, S. Eachempati, N. Soundararajan, N. Vijaykrishnan, M. J. Irwin, R. Krishnan","doi":"10.1109/ASPDAC.2010.5419844","DOIUrl":null,"url":null,"abstract":"We propose novel techniques to minimize the power and performance penalties in protecting the NoC against soft errors, while giving desired reliability guarantees. Some applications have inherent error tolerance which can be exploited to save power, by turning off the error correction mechanisms for a fraction of the total time without trading off reliability. To further increase the power savings, we bound the vulnerability of a router by throttling the traffic into the router. In order to minimize the throughput loss due to throttling, we propose dividing the die into domains and using multiple vulnerability bounds across these domains. We explore both static and dynamic selection of vulnerability bounds. We find that for applications with an error tolerance of 10% of the raw error rate, the dynamic multiple vulnerability bound scheme can save up to 44% of power expended for error correction at a marginal network throughput loss of 3%.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Optimizing power and performance for reliable on-chip networks\",\"authors\":\"A. Yanamandra, S. Eachempati, N. Soundararajan, N. Vijaykrishnan, M. J. Irwin, R. Krishnan\",\"doi\":\"10.1109/ASPDAC.2010.5419844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose novel techniques to minimize the power and performance penalties in protecting the NoC against soft errors, while giving desired reliability guarantees. Some applications have inherent error tolerance which can be exploited to save power, by turning off the error correction mechanisms for a fraction of the total time without trading off reliability. To further increase the power savings, we bound the vulnerability of a router by throttling the traffic into the router. In order to minimize the throughput loss due to throttling, we propose dividing the die into domains and using multiple vulnerability bounds across these domains. We explore both static and dynamic selection of vulnerability bounds. We find that for applications with an error tolerance of 10% of the raw error rate, the dynamic multiple vulnerability bound scheme can save up to 44% of power expended for error correction at a marginal network throughput loss of 3%.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing power and performance for reliable on-chip networks
We propose novel techniques to minimize the power and performance penalties in protecting the NoC against soft errors, while giving desired reliability guarantees. Some applications have inherent error tolerance which can be exploited to save power, by turning off the error correction mechanisms for a fraction of the total time without trading off reliability. To further increase the power savings, we bound the vulnerability of a router by throttling the traffic into the router. In order to minimize the throughput loss due to throttling, we propose dividing the die into domains and using multiple vulnerability bounds across these domains. We explore both static and dynamic selection of vulnerability bounds. We find that for applications with an error tolerance of 10% of the raw error rate, the dynamic multiple vulnerability bound scheme can save up to 44% of power expended for error correction at a marginal network throughput loss of 3%.