结合DNA序列和形状特征数据的深度学习预测转录因子结合位点

Yangyang Li, Jie Liu, Hao Liu
{"title":"结合DNA序列和形状特征数据的深度学习预测转录因子结合位点","authors":"Yangyang Li, Jie Liu, Hao Liu","doi":"10.1145/3469877.3497696","DOIUrl":null,"url":null,"abstract":"Knowing transcription factor binding sites (TFBS) is essential to model underlying binding mechanisms and cellular functions. Studies have shown that in addition to the DNA sequence, the shape information of DNA is also an important factor affecting its activity. Here, we developed a CNN model to integrate 3D DNA shape information derived using a high-throughput method for predicting TF binding sites (TFBSs). We identify the best performing architectures by varying CNN window size, kernels, hidden nodes and hidden layers. The performance of the two types of data and their combination was evaluated using 69 different ChIP-seq [1] experiments. Our results showed that the model integrating shape information and sequence information compared favorably to the sequence-based model This work combines knowledge from structural biology and genomics, and DNA shape features improved the description of TF binding specificity.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Transcription Factor Binding Sites Using Deep Learning Combined with DNA Sequences and Shape Feature Data\",\"authors\":\"Yangyang Li, Jie Liu, Hao Liu\",\"doi\":\"10.1145/3469877.3497696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowing transcription factor binding sites (TFBS) is essential to model underlying binding mechanisms and cellular functions. Studies have shown that in addition to the DNA sequence, the shape information of DNA is also an important factor affecting its activity. Here, we developed a CNN model to integrate 3D DNA shape information derived using a high-throughput method for predicting TF binding sites (TFBSs). We identify the best performing architectures by varying CNN window size, kernels, hidden nodes and hidden layers. The performance of the two types of data and their combination was evaluated using 69 different ChIP-seq [1] experiments. Our results showed that the model integrating shape information and sequence information compared favorably to the sequence-based model This work combines knowledge from structural biology and genomics, and DNA shape features improved the description of TF binding specificity.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3497696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3497696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解转录因子结合位点(TFBS)对于模拟潜在的结合机制和细胞功能至关重要。研究表明,除了DNA序列外,DNA的形状信息也是影响其活性的重要因素。在这里,我们开发了一个CNN模型来整合使用高通量方法预测TF结合位点(TFBSs)获得的3D DNA形状信息。我们通过改变CNN窗口大小、内核、隐藏节点和隐藏层来识别性能最好的架构。通过69个不同的ChIP-seq[1]实验,评估了两种类型数据及其组合的性能。我们的研究结果表明,整合形状信息和序列信息的模型优于基于序列的模型。这项工作结合了结构生物学和基因组学的知识,DNA形状特征改进了对TF结合特异性的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Transcription Factor Binding Sites Using Deep Learning Combined with DNA Sequences and Shape Feature Data
Knowing transcription factor binding sites (TFBS) is essential to model underlying binding mechanisms and cellular functions. Studies have shown that in addition to the DNA sequence, the shape information of DNA is also an important factor affecting its activity. Here, we developed a CNN model to integrate 3D DNA shape information derived using a high-throughput method for predicting TF binding sites (TFBSs). We identify the best performing architectures by varying CNN window size, kernels, hidden nodes and hidden layers. The performance of the two types of data and their combination was evaluated using 69 different ChIP-seq [1] experiments. Our results showed that the model integrating shape information and sequence information compared favorably to the sequence-based model This work combines knowledge from structural biology and genomics, and DNA shape features improved the description of TF binding specificity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1