基于神经网络和稀疏块处理的MIMO OFDM通信系统非线性自适应均衡器

Basabadatta Mohanty, H. K. Sahoo, B. Patnaik
{"title":"基于神经网络和稀疏块处理的MIMO OFDM通信系统非线性自适应均衡器","authors":"Basabadatta Mohanty, H. K. Sahoo, B. Patnaik","doi":"10.1109/TENCON.2018.8650367","DOIUrl":null,"url":null,"abstract":"In the proposed work presented in the paper, adaptive equalizer for MIMO-OFDM system is designed using neural network with functional expansions and neural weights are adjusted using sparse adaptive filter with block processing of input samples. By introducing l0-norm sparsity in the cost function of the block RLS (BRLS), equalization can be achieved for MIMO wireless channels with a comparatively less computational load. Nakagami-m fading channel model is used to represent the dispersive nature of fading wireless channel. 16-QAM constellation format is used to modulate the incoming data. The most important contribution of the paper lies in the inclusion of norm based sparsity in equalizer design which yields a low bit error rate (BER) and mean square error (MSE) even in low SNR conditins.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network and Sparse Block Processing Based Nonlinear Adaptive Equalizer for MIMO OFDM Communication Systems\",\"authors\":\"Basabadatta Mohanty, H. K. Sahoo, B. Patnaik\",\"doi\":\"10.1109/TENCON.2018.8650367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the proposed work presented in the paper, adaptive equalizer for MIMO-OFDM system is designed using neural network with functional expansions and neural weights are adjusted using sparse adaptive filter with block processing of input samples. By introducing l0-norm sparsity in the cost function of the block RLS (BRLS), equalization can be achieved for MIMO wireless channels with a comparatively less computational load. Nakagami-m fading channel model is used to represent the dispersive nature of fading wireless channel. 16-QAM constellation format is used to modulate the incoming data. The most important contribution of the paper lies in the inclusion of norm based sparsity in equalizer design which yields a low bit error rate (BER) and mean square error (MSE) even in low SNR conditins.\",\"PeriodicalId\":132900,\"journal\":{\"name\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2018.8650367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文提出的工作中,采用功能展开的神经网络设计MIMO-OFDM系统的自适应均衡器,并通过对输入样本进行分块处理的稀疏自适应滤波器调整神经权值。通过在块RLS (BRLS)的代价函数中引入10范数稀疏性,可以以相对较少的计算负荷实现MIMO无线信道的均衡。采用Nakagami-m衰落信道模型来表征衰落无线信道的色散特性。采用16-QAM星座格式调制入站数据。本文最重要的贡献在于在均衡器设计中包含基于范数的稀疏性,即使在低信噪比条件下也能产生低误码率(BER)和均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network and Sparse Block Processing Based Nonlinear Adaptive Equalizer for MIMO OFDM Communication Systems
In the proposed work presented in the paper, adaptive equalizer for MIMO-OFDM system is designed using neural network with functional expansions and neural weights are adjusted using sparse adaptive filter with block processing of input samples. By introducing l0-norm sparsity in the cost function of the block RLS (BRLS), equalization can be achieved for MIMO wireless channels with a comparatively less computational load. Nakagami-m fading channel model is used to represent the dispersive nature of fading wireless channel. 16-QAM constellation format is used to modulate the incoming data. The most important contribution of the paper lies in the inclusion of norm based sparsity in equalizer design which yields a low bit error rate (BER) and mean square error (MSE) even in low SNR conditins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1