Yanan Xiao, Minyu Liu, Zichen Zhang, Lu Jiang, Minghao Yin, Jianan Wang
{"title":"基于持续强化学习的流交通流预测","authors":"Yanan Xiao, Minyu Liu, Zichen Zhang, Lu Jiang, Minghao Yin, Jianan Wang","doi":"10.1109/ICDMW58026.2022.00011","DOIUrl":null,"url":null,"abstract":"Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic net-work. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time. Along these lines, we propose streaming traffic flow prediction based on continuous reinforcement learning model (ST-CRL), a kind of predictive model based on reinforcement learning and continuous learning, and an analytical algorithm based on KL divergence that cleverly incorporates long-term novel patterns into model induction. Second, we introduce a prioritized experience replay strategy to consolidate and aggregate previously learned core knowledge into the model. The proposed model is able to continuously learn and predict as the traffic flow network expands and evolves over time. Extensive experiments show that the algorithm has great potential in predicting long-term streaming media networks, while achieving data privacy protection to a certain extent.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Streaming Traffic Flow Prediction Based on Continuous Reinforcement Learning\",\"authors\":\"Yanan Xiao, Minyu Liu, Zichen Zhang, Lu Jiang, Minghao Yin, Jianan Wang\",\"doi\":\"10.1109/ICDMW58026.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic net-work. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time. Along these lines, we propose streaming traffic flow prediction based on continuous reinforcement learning model (ST-CRL), a kind of predictive model based on reinforcement learning and continuous learning, and an analytical algorithm based on KL divergence that cleverly incorporates long-term novel patterns into model induction. Second, we introduce a prioritized experience replay strategy to consolidate and aggregate previously learned core knowledge into the model. The proposed model is able to continuously learn and predict as the traffic flow network expands and evolves over time. Extensive experiments show that the algorithm has great potential in predicting long-term streaming media networks, while achieving data privacy protection to a certain extent.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streaming Traffic Flow Prediction Based on Continuous Reinforcement Learning
Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic net-work. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time. Along these lines, we propose streaming traffic flow prediction based on continuous reinforcement learning model (ST-CRL), a kind of predictive model based on reinforcement learning and continuous learning, and an analytical algorithm based on KL divergence that cleverly incorporates long-term novel patterns into model induction. Second, we introduce a prioritized experience replay strategy to consolidate and aggregate previously learned core knowledge into the model. The proposed model is able to continuously learn and predict as the traffic flow network expands and evolves over time. Extensive experiments show that the algorithm has great potential in predicting long-term streaming media networks, while achieving data privacy protection to a certain extent.