小波分解用于胃食管反流病研究中的食管压力测量数据分析

M. Najmabadi, V. Devabhaktuni, M. Sawan, C. Fallone
{"title":"小波分解用于胃食管反流病研究中的食管压力测量数据分析","authors":"M. Najmabadi, V. Devabhaktuni, M. Sawan, C. Fallone","doi":"10.1109/BIOCAS.2007.4463345","DOIUrl":null,"url":null,"abstract":"Wavelet decomposition is gaining attention as a novel signal processing tool for analyzing nonlinear time-series. Compared to traditional Fourier transform, wavelet transform better represents functions exhibiting discontinuities and sudden changes. As such, wavelet-based techniques are strong candidates for the analysis of bio-signals (e.g. gastric and esophageal signals), in which, sudden changes and sharp peaks are likely. For the first time, this paper applies wavelet decomposition to the analysis of esophageal manometric data, which is critical in the diagnosis of gastroesophageal reflux disease. Simulation results of wavelet decomposition are compared with those of a recent approach based on empirical mode decomposition. Such comparison shows that wavelet decomposition leads to better results in terms of number of decomposition coefficients (15 versus 17), CPU-time (0.5 s versus 75 s), and signal-to-background ratio (0.97 versus 0.85).","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wavelet Decomposition for the Analysis of Esophageal Manometric Data in the Study of Gastroesophageal Reflux Disease\",\"authors\":\"M. Najmabadi, V. Devabhaktuni, M. Sawan, C. Fallone\",\"doi\":\"10.1109/BIOCAS.2007.4463345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet decomposition is gaining attention as a novel signal processing tool for analyzing nonlinear time-series. Compared to traditional Fourier transform, wavelet transform better represents functions exhibiting discontinuities and sudden changes. As such, wavelet-based techniques are strong candidates for the analysis of bio-signals (e.g. gastric and esophageal signals), in which, sudden changes and sharp peaks are likely. For the first time, this paper applies wavelet decomposition to the analysis of esophageal manometric data, which is critical in the diagnosis of gastroesophageal reflux disease. Simulation results of wavelet decomposition are compared with those of a recent approach based on empirical mode decomposition. Such comparison shows that wavelet decomposition leads to better results in terms of number of decomposition coefficients (15 versus 17), CPU-time (0.5 s versus 75 s), and signal-to-background ratio (0.97 versus 0.85).\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

小波分解作为一种新的分析非线性时间序列的信号处理工具正受到越来越多的关注。与传统的傅里叶变换相比,小波变换能更好地表征不连续和突变的函数。因此,基于小波的技术是分析生物信号(例如胃和食管信号)的有力候选,其中可能发生突然变化和尖峰。本文首次将小波分解应用于胃食管反流病诊断中至关重要的食管测压数据分析。将小波分解方法与经验模态分解方法的仿真结果进行了比较。这样的比较表明,小波分解在分解系数的数量(15 vs 17)、cpu时间(0.5 s vs 75 s)和信本比(0.97 vs 0.85)方面取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet Decomposition for the Analysis of Esophageal Manometric Data in the Study of Gastroesophageal Reflux Disease
Wavelet decomposition is gaining attention as a novel signal processing tool for analyzing nonlinear time-series. Compared to traditional Fourier transform, wavelet transform better represents functions exhibiting discontinuities and sudden changes. As such, wavelet-based techniques are strong candidates for the analysis of bio-signals (e.g. gastric and esophageal signals), in which, sudden changes and sharp peaks are likely. For the first time, this paper applies wavelet decomposition to the analysis of esophageal manometric data, which is critical in the diagnosis of gastroesophageal reflux disease. Simulation results of wavelet decomposition are compared with those of a recent approach based on empirical mode decomposition. Such comparison shows that wavelet decomposition leads to better results in terms of number of decomposition coefficients (15 versus 17), CPU-time (0.5 s versus 75 s), and signal-to-background ratio (0.97 versus 0.85).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1