基于结构自适应SOM的三维点光演员性别分类

Sung-Bae Cho
{"title":"基于结构自适应SOM的三维点光演员性别分类","authors":"Sung-Bae Cho","doi":"10.1109/ICONIP.2002.1198201","DOIUrl":null,"url":null,"abstract":"Classifying the patterns of moving point lights attached on actor's bodies with self-organizing map often fails to get successful results with its original unsupervised learning algorithm. This paper exploits a structure-adaptive self-organizing map (SASOM) which adaptively updates the weights, structure and size of the map, resulting in remarkable improvement of pattern classification performance. We have compared the results with those of conventional pattern classifiers and human subjects. SASOM turns out to be the best classifier producing 97.1% of recognition rate on the 312 test data from 26 subjects.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-adaptive SOM to classify 3-dimensional point light actors' gender\",\"authors\":\"Sung-Bae Cho\",\"doi\":\"10.1109/ICONIP.2002.1198201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying the patterns of moving point lights attached on actor's bodies with self-organizing map often fails to get successful results with its original unsupervised learning algorithm. This paper exploits a structure-adaptive self-organizing map (SASOM) which adaptively updates the weights, structure and size of the map, resulting in remarkable improvement of pattern classification performance. We have compared the results with those of conventional pattern classifiers and human subjects. SASOM turns out to be the best classifier producing 97.1% of recognition rate on the 312 test data from 26 subjects.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用自组织映射对附着在演员身上的移动点光的模式进行分类,其原有的无监督学习算法往往无法获得成功的结果。本文提出了一种结构自适应自组织映射(SASOM),可以自适应地更新映射的权值、结构和大小,显著提高了模式分类性能。我们将结果与传统模式分类器和人类受试者的结果进行了比较。结果表明,在26个受试者的312个测试数据中,SASOM是最好的分类器,识别率为97.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure-adaptive SOM to classify 3-dimensional point light actors' gender
Classifying the patterns of moving point lights attached on actor's bodies with self-organizing map often fails to get successful results with its original unsupervised learning algorithm. This paper exploits a structure-adaptive self-organizing map (SASOM) which adaptively updates the weights, structure and size of the map, resulting in remarkable improvement of pattern classification performance. We have compared the results with those of conventional pattern classifiers and human subjects. SASOM turns out to be the best classifier producing 97.1% of recognition rate on the 312 test data from 26 subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1