具有多个加气站的机器人持久存在的系统设计和资源分析

Hyorin Park, J. R. Morrison
{"title":"具有多个加气站的机器人持久存在的系统设计和资源分析","authors":"Hyorin Park, J. R. Morrison","doi":"10.1109/ICUAS.2019.8797808","DOIUrl":null,"url":null,"abstract":"Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"System design and resource analysis for persistent robotic presence with multiple refueling stations\",\"authors\":\"Hyorin Park, J. R. Morrison\",\"doi\":\"10.1109/ICUAS.2019.8797808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.\",\"PeriodicalId\":426616,\"journal\":{\"name\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2019.8797808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

尽管无人机(uav)有能力,但由于燃料限制,仅用几架无人机执行长期任务是不可能的。这需要一个包括多架无人机和自动充电站的系统,以实现自动和持久的服务。为了建立一个持久存在的系统,例如当地的监视和监测,必须确定特派团的设计和所需资源的数量。本文考虑了一个由多个目标区域和多个站点组成的系统。有两种类型的站:加油站和维护主站。无人机可以使用燃料补给站飞得更远。针对包含多个固定目标和站点的循环路径,建立了一种无决策Petri网模型。从Petri网模型出发,导出了持久系统中最小资源数的封闭函数。建立了一个由Petri网导出目标函数的数学模型。为了解决计算问题,采用遗传算法(GA)进行求解。从而推导出所需资源的最小数量和任务路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System design and resource analysis for persistent robotic presence with multiple refueling stations
Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Centroid vectoring control using aerial manipulator: Experimental results Comparative Study for Coordinating Multiple Unmanned HAPS for Communications Area Coverage A Methodology for evaluating Commercial Off The Shelf parachutes designed for sUAS failsafe systems Model-Based Fail-Safe Module for Autonomous Multirotor UAVs with Parachute Systems Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1