{"title":"电子组件非线性相互作用对多轴振动响应的影响","authors":"Xiao-guang Lin, A. Dasgupta","doi":"10.1109/EUROSIME.2019.8724508","DOIUrl":null,"url":null,"abstract":"Electronic packages are often exposed to complex life cycle environments, and in many cases, that involves exposure to multiaxial vibration. Previous studies have shown that under moderate or high amplitude multiaxial vibration, electronic systems can experience nonlinear response, especially for heavy components with high stand-off. This can produce cross-axis nonlinear interactions, resulting in amplification (or cancellation) of the nonlinear response, in comparison to the responses to uniaxial excitation along orthogonal axes. This nonlinear interaction has obvious implications on vibration durability of the assembly. The study performs a parametric combination of uniaxial and multiaxial vibration testing and modelling on structures that are mechanically equivalent to tall heavy electronic components, with varying loading parameters. Mechanical beams are designed as scaled surrogates to represent the dynamical behavior of Printed Circuit Boards (PCBs) with tall and heavy components on it. To investigate the nonlinear effects of multiaxial vibration excitation under different loading conditions, mechanical beams of different mass and length have been tested under different excitation profiles. The result shows that multiaxial vibration excitation can produce significant amounts of nonlinear cross-axis interactions, thus raising questions about the effectiveness of the traditional methodology of superposition of uniaxial vibration excitation for PWAs. The severity of nonlinear response depends not only on excitation parameters such as frequency ratios, phase relationships and amplitudes, but also on the component architecture. The resulting crossaxis interaction increases as the component becomes taller and heavier, which shows correlation between the size of the component and the nonlinearity of the vibrational response. The findings of this study will provide important guidance for developing protocols for multiaxial vibration testing instead of sequential uniaxial vibration testing.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Nonlinear Interactions of Electronic Assemblies in Response to Multiaxial Vibration\",\"authors\":\"Xiao-guang Lin, A. Dasgupta\",\"doi\":\"10.1109/EUROSIME.2019.8724508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic packages are often exposed to complex life cycle environments, and in many cases, that involves exposure to multiaxial vibration. Previous studies have shown that under moderate or high amplitude multiaxial vibration, electronic systems can experience nonlinear response, especially for heavy components with high stand-off. This can produce cross-axis nonlinear interactions, resulting in amplification (or cancellation) of the nonlinear response, in comparison to the responses to uniaxial excitation along orthogonal axes. This nonlinear interaction has obvious implications on vibration durability of the assembly. The study performs a parametric combination of uniaxial and multiaxial vibration testing and modelling on structures that are mechanically equivalent to tall heavy electronic components, with varying loading parameters. Mechanical beams are designed as scaled surrogates to represent the dynamical behavior of Printed Circuit Boards (PCBs) with tall and heavy components on it. To investigate the nonlinear effects of multiaxial vibration excitation under different loading conditions, mechanical beams of different mass and length have been tested under different excitation profiles. The result shows that multiaxial vibration excitation can produce significant amounts of nonlinear cross-axis interactions, thus raising questions about the effectiveness of the traditional methodology of superposition of uniaxial vibration excitation for PWAs. The severity of nonlinear response depends not only on excitation parameters such as frequency ratios, phase relationships and amplitudes, but also on the component architecture. The resulting crossaxis interaction increases as the component becomes taller and heavier, which shows correlation between the size of the component and the nonlinearity of the vibrational response. The findings of this study will provide important guidance for developing protocols for multiaxial vibration testing instead of sequential uniaxial vibration testing.\",\"PeriodicalId\":357224,\"journal\":{\"name\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"402 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2019.8724508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子封装经常暴露在复杂的生命周期环境中,在许多情况下,这涉及暴露于多轴振动。以往的研究表明,在中幅或高幅的多轴振动下,电子系统会产生非线性响应,特别是对于具有高间隙的重型部件。这可以产生跨轴非线性相互作用,导致非线性响应的放大(或消除),与响应单轴激励沿着正交轴。这种非线性相互作用对装配的振动耐久性有明显的影响。该研究对结构进行了单轴和多轴振动测试和建模的参数组合,这些结构的机械等效于具有不同加载参数的高大重型电子元件。机械梁被设计成比例的替代物,以表示承载高、重组件的印刷电路板(pcb)的动力学行为。为了研究不同载荷条件下多轴振动激励的非线性效应,对不同质量和长度的机械梁在不同激励工况下进行了试验。结果表明,多轴振动激励会产生大量的非线性跨轴相互作用,从而对传统的单轴振动激励叠加方法的有效性提出了质疑。非线性响应的严重程度不仅取决于激励参数,如频率比、相位关系和幅值,还与元件结构有关。随着构件的高度和重量的增加,交叉相互作用增加,这表明了构件尺寸与振动响应的非线性之间的相关性。本研究结果将为多轴振动测试方案的制定提供重要的指导,而不是连续的单轴振动测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Nonlinear Interactions of Electronic Assemblies in Response to Multiaxial Vibration
Electronic packages are often exposed to complex life cycle environments, and in many cases, that involves exposure to multiaxial vibration. Previous studies have shown that under moderate or high amplitude multiaxial vibration, electronic systems can experience nonlinear response, especially for heavy components with high stand-off. This can produce cross-axis nonlinear interactions, resulting in amplification (or cancellation) of the nonlinear response, in comparison to the responses to uniaxial excitation along orthogonal axes. This nonlinear interaction has obvious implications on vibration durability of the assembly. The study performs a parametric combination of uniaxial and multiaxial vibration testing and modelling on structures that are mechanically equivalent to tall heavy electronic components, with varying loading parameters. Mechanical beams are designed as scaled surrogates to represent the dynamical behavior of Printed Circuit Boards (PCBs) with tall and heavy components on it. To investigate the nonlinear effects of multiaxial vibration excitation under different loading conditions, mechanical beams of different mass and length have been tested under different excitation profiles. The result shows that multiaxial vibration excitation can produce significant amounts of nonlinear cross-axis interactions, thus raising questions about the effectiveness of the traditional methodology of superposition of uniaxial vibration excitation for PWAs. The severity of nonlinear response depends not only on excitation parameters such as frequency ratios, phase relationships and amplitudes, but also on the component architecture. The resulting crossaxis interaction increases as the component becomes taller and heavier, which shows correlation between the size of the component and the nonlinearity of the vibrational response. The findings of this study will provide important guidance for developing protocols for multiaxial vibration testing instead of sequential uniaxial vibration testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A SPICE-based Transient Thermal-Electronic Model for LEDs Electromigration Effects in Corroded BGA Accelerated Pump Out Testing for Thermal Greases Effect of material properties on PCB frequencies in electronic control unit Simulative Comparison of Polymer and Ceramic Encapsulation on SiC-MOSFET Power Modules under Thermomechanical Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1