5G时代基于时空社会多特征的内容交付服务细粒度热点预测

Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung
{"title":"5G时代基于时空社会多特征的内容交付服务细粒度热点预测","authors":"Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung","doi":"10.1145/3459637.3482298","DOIUrl":null,"url":null,"abstract":"The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-Temporal-Social Multi-Feature-based Fine-Grained Hot Spots Prediction for Content Delivery Services in 5G Era\",\"authors\":\"Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung\",\"doi\":\"10.1145/3459637.3482298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

5G网络的到来广泛促进了内容交付服务(cds)的增长。了解和预测cds的时空分布有利于移动用户、互联网内容提供商和运营商。传统的cds时空分布预测方法多以基站为中心,通用性弱,空间粒度粗。为了提高模型的空间精度和泛化能力,本文提出了以用户为中心的cds时空分析方法。利用地理编码和时空图建模算法,将移动设备上的cds记录建模为具有时空属性的动态图。此外,我们提出了一个时空社会多特征提取框架,用于空间细粒度cds热点预测。具体而言,基于社会关系和空间依赖特征,设计了一种边缘增强图卷积块对cds信息进行编码。此外,我们引入了长短期记忆(LSTM)来进一步捕捉时间依赖性。在两个真实cds数据集上的实验验证了所提出框架的有效性,并进行了消融研究来评估每个特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-Temporal-Social Multi-Feature-based Fine-Grained Hot Spots Prediction for Content Delivery Services in 5G Era
The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1