{"title":"迭代解码器的低功耗VLSI设计范例","authors":"M. Elassal, A. Baker, M. Bayoumi","doi":"10.1109/SIPS.2005.1579878","DOIUrl":null,"url":null,"abstract":"In this paper we present low power maximum a posteriori (MAP) decoder architectures using dual supply voltages. The architecture leverages an application specific integrated circuits (ASIC) structure, where the architecture components that require a higher performance are powered from a high supply voltages V/sub ddH/, and the less demanding components are powered from a low supply voltage V/sub ddL/. Salient features of this architecture include: (a) high level of parallelism, (b) reduced power consumption without affecting the architecture performance, and (c) a tradeoff between the decoding time delay and the number of state metric banks, branch metric banks, and state metric update kernels respectively. The power consumption reduction of the dual-supply voltage over the single-supply voltage has been estimated and the memory access frequencies as well. The proposed architecture achieves approximate 35-40% power reduction from the single-supply architecture.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A low power VLSI design paradigm for iterative decoders\",\"authors\":\"M. Elassal, A. Baker, M. Bayoumi\",\"doi\":\"10.1109/SIPS.2005.1579878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present low power maximum a posteriori (MAP) decoder architectures using dual supply voltages. The architecture leverages an application specific integrated circuits (ASIC) structure, where the architecture components that require a higher performance are powered from a high supply voltages V/sub ddH/, and the less demanding components are powered from a low supply voltage V/sub ddL/. Salient features of this architecture include: (a) high level of parallelism, (b) reduced power consumption without affecting the architecture performance, and (c) a tradeoff between the decoding time delay and the number of state metric banks, branch metric banks, and state metric update kernels respectively. The power consumption reduction of the dual-supply voltage over the single-supply voltage has been estimated and the memory access frequencies as well. The proposed architecture achieves approximate 35-40% power reduction from the single-supply architecture.\",\"PeriodicalId\":436123,\"journal\":{\"name\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2005.1579878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low power VLSI design paradigm for iterative decoders
In this paper we present low power maximum a posteriori (MAP) decoder architectures using dual supply voltages. The architecture leverages an application specific integrated circuits (ASIC) structure, where the architecture components that require a higher performance are powered from a high supply voltages V/sub ddH/, and the less demanding components are powered from a low supply voltage V/sub ddL/. Salient features of this architecture include: (a) high level of parallelism, (b) reduced power consumption without affecting the architecture performance, and (c) a tradeoff between the decoding time delay and the number of state metric banks, branch metric banks, and state metric update kernels respectively. The power consumption reduction of the dual-supply voltage over the single-supply voltage has been estimated and the memory access frequencies as well. The proposed architecture achieves approximate 35-40% power reduction from the single-supply architecture.