一种新的在线最小二乘支持向量机算法在瓦斯预测中的研究

Xiao-hu Zhao, Ke-ke Zhao
{"title":"一种新的在线最小二乘支持向量机算法在瓦斯预测中的研究","authors":"Xiao-hu Zhao, Ke-ke Zhao","doi":"10.1109/INDIN.2008.4618253","DOIUrl":null,"url":null,"abstract":"This paper studied on time series prediction, and proposes a new prediction algorithm of LS-SVM online learning against the shortcomings in the traditional online learning with least squares support vector machine. This algorithm was researched and used in coal mine gas prediction and had proved effective, compared with the actual data and other relative algorithms.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Study of a new online Least Squares Support Vector Machine algorithm in gas prediction\",\"authors\":\"Xiao-hu Zhao, Ke-ke Zhao\",\"doi\":\"10.1109/INDIN.2008.4618253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studied on time series prediction, and proposes a new prediction algorithm of LS-SVM online learning against the shortcomings in the traditional online learning with least squares support vector machine. This algorithm was researched and used in coal mine gas prediction and had proved effective, compared with the actual data and other relative algorithms.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文对时间序列预测进行了研究,针对传统最小二乘支持向量机在线学习的不足,提出了一种新的LS-SVM在线学习预测算法。将该算法应用于煤矿瓦斯预测中,并与实际数据和其他相关算法进行了比较,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of a new online Least Squares Support Vector Machine algorithm in gas prediction
This paper studied on time series prediction, and proposes a new prediction algorithm of LS-SVM online learning against the shortcomings in the traditional online learning with least squares support vector machine. This algorithm was researched and used in coal mine gas prediction and had proved effective, compared with the actual data and other relative algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Safety supervision layer A feature selection method for Automated Visual Inspection systems Performances linkages between an airport and the Air Cargo Supply Chain — Evidences from Hong Kong and Singapore Kinematics control for a 6-DOF space manipulator based on ARM processor and FPGA Co-processor Remote robot control system based on DTMF of mobile phone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1