{"title":"定点算术电路中中间变量缩放精度分析","authors":"O. Sarbishei, K. Radecka","doi":"10.5555/2133429.2133586","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for scaling the intermediate variables in implementing fixed-point polynomial-based arithmetic circuits. Analysis of precision has been used first to set the input and coefficient bit-widths of the polynomial so that a given error bound is satisfied. Then, we present an efficient approach to scale and truncate different intermediate variables with no need of re-computing precision at each stage. After applying it to all the intermediate variables, a final precision computation and sensitivity analysis is performed to set the final values of truncation bits so that the given error bound remains satisfied. Experimental results on a set of polynomial benchmarks show the robustness and efficiency of the proposed technique.","PeriodicalId":344703,"journal":{"name":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analysis of precision for scaling the intermediate variables in fixed-point arithmetic circuits\",\"authors\":\"O. Sarbishei, K. Radecka\",\"doi\":\"10.5555/2133429.2133586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique for scaling the intermediate variables in implementing fixed-point polynomial-based arithmetic circuits. Analysis of precision has been used first to set the input and coefficient bit-widths of the polynomial so that a given error bound is satisfied. Then, we present an efficient approach to scale and truncate different intermediate variables with no need of re-computing precision at each stage. After applying it to all the intermediate variables, a final precision computation and sensitivity analysis is performed to set the final values of truncation bits so that the given error bound remains satisfied. Experimental results on a set of polynomial benchmarks show the robustness and efficiency of the proposed technique.\",\"PeriodicalId\":344703,\"journal\":{\"name\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2133429.2133586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2133429.2133586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of precision for scaling the intermediate variables in fixed-point arithmetic circuits
This paper presents a new technique for scaling the intermediate variables in implementing fixed-point polynomial-based arithmetic circuits. Analysis of precision has been used first to set the input and coefficient bit-widths of the polynomial so that a given error bound is satisfied. Then, we present an efficient approach to scale and truncate different intermediate variables with no need of re-computing precision at each stage. After applying it to all the intermediate variables, a final precision computation and sensitivity analysis is performed to set the final values of truncation bits so that the given error bound remains satisfied. Experimental results on a set of polynomial benchmarks show the robustness and efficiency of the proposed technique.