非结构化点对点网络的自适应资源索引技术

S. Lerthirunwong, N. Maruyama, S. Matsuoka
{"title":"非结构化点对点网络的自适应资源索引技术","authors":"S. Lerthirunwong, N. Maruyama, S. Matsuoka","doi":"10.1109/CCGRID.2009.41","DOIUrl":null,"url":null,"abstract":"Searching for particular resources in a large-scale decentralized unstructured network can be very difficult since there is no centralized management to provide the specific location of resources. Moreover, the dynamic behavior of networks and the diversity of user behavior cause the search more complex and may not guarantee success. To address the problems, we propose a new adaptive resource indexing technique that aims to increase both efficiency and quality of the search by reducing both messages and time required for each query. Our approach consists of two complementary techniques. One is an index selection technique that selectively keeps the indices at each peer to increase the chance of successful queries with minimum space requirement. Another is an index distribution technique that automatically adjusts index distribution rate based on the search performance to optimize both the search performance and overhead. We simulate the technique in various network conditions and the results show that our technique is effective in decreasing hop counts and messages needed for resolving queries with only small overhead. It decreases the average hop count by up to 44% with 75%-less messages when used with flooding based queries even facing high churn. Furthermore, the query success rate with a limited timeout condition also increases, approaching nearly to 100%.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Resource Indexing Technique for Unstructured Peer-to-Peer Networks\",\"authors\":\"S. Lerthirunwong, N. Maruyama, S. Matsuoka\",\"doi\":\"10.1109/CCGRID.2009.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searching for particular resources in a large-scale decentralized unstructured network can be very difficult since there is no centralized management to provide the specific location of resources. Moreover, the dynamic behavior of networks and the diversity of user behavior cause the search more complex and may not guarantee success. To address the problems, we propose a new adaptive resource indexing technique that aims to increase both efficiency and quality of the search by reducing both messages and time required for each query. Our approach consists of two complementary techniques. One is an index selection technique that selectively keeps the indices at each peer to increase the chance of successful queries with minimum space requirement. Another is an index distribution technique that automatically adjusts index distribution rate based on the search performance to optimize both the search performance and overhead. We simulate the technique in various network conditions and the results show that our technique is effective in decreasing hop counts and messages needed for resolving queries with only small overhead. It decreases the average hop count by up to 44% with 75%-less messages when used with flooding based queries even facing high churn. Furthermore, the query success rate with a limited timeout condition also increases, approaching nearly to 100%.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在大规模分散的非结构化网络中搜索特定资源可能非常困难,因为没有集中管理来提供资源的具体位置。此外,网络的动态行为和用户行为的多样性使搜索更加复杂,可能无法保证成功。为了解决这些问题,我们提出了一种新的自适应资源索引技术,该技术旨在通过减少每个查询所需的消息和时间来提高搜索的效率和质量。我们的方法由两种互补的技术组成。一种是索引选择技术,它选择性地在每个节点上保留索引,以最小的空间需求增加查询成功的机会。另一种是索引分布技术,它根据搜索性能自动调整索引分布率,以优化搜索性能和开销。我们在各种网络条件下对该技术进行了模拟,结果表明,我们的技术有效地减少了解决查询所需的跳数和消息,并且开销很小。当使用基于泛洪的查询时,即使面对高流失率,它也能将平均跳数减少多达44%,消息减少75%。此外,在有限超时条件下,查询成功率也有所提高,接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Resource Indexing Technique for Unstructured Peer-to-Peer Networks
Searching for particular resources in a large-scale decentralized unstructured network can be very difficult since there is no centralized management to provide the specific location of resources. Moreover, the dynamic behavior of networks and the diversity of user behavior cause the search more complex and may not guarantee success. To address the problems, we propose a new adaptive resource indexing technique that aims to increase both efficiency and quality of the search by reducing both messages and time required for each query. Our approach consists of two complementary techniques. One is an index selection technique that selectively keeps the indices at each peer to increase the chance of successful queries with minimum space requirement. Another is an index distribution technique that automatically adjusts index distribution rate based on the search performance to optimize both the search performance and overhead. We simulate the technique in various network conditions and the results show that our technique is effective in decreasing hop counts and messages needed for resolving queries with only small overhead. It decreases the average hop count by up to 44% with 75%-less messages when used with flooding based queries even facing high churn. Furthermore, the query success rate with a limited timeout condition also increases, approaching nearly to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1