Raymond Kwesi Nutor , Qingping Cao , Xiaodong Wang , Shaoqing Ding , Dongxian Zhang , Jian-Zhong Jiang
{"title":"加速镍基中熵合金的出现,强调其力学性能","authors":"Raymond Kwesi Nutor , Qingping Cao , Xiaodong Wang , Shaoqing Ding , Dongxian Zhang , Jian-Zhong Jiang","doi":"10.1016/j.cossms.2022.101032","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of alloying has evolved over the centuries and in the past decade and a half, the emergence of the high entropy alloying concept has completely changed our perception of alloy design. This alloying strategy has been found to exhibit exciting properties such as high strength, excellent corrosion resistance, high cryogenic fracture toughness, thermal stability, and irradiation resistance. While the fcc-structured equiatomic CrMnFeCoNi has been very popular over the years, the discovery of the superior properties by a ternary CoNiCr alloy, kick-started a new era for medium-entropy alloy-focused research in the last 5–10 years due to the realization that “medium is better”. Here we review the recent progress made in the development of medium entropy alloys from a binary CoNi building block (CoNi-M, where M is Fe, Cr, or V), which are prototype systems of medium-entropy alloys. We discuss the relationship between their microstructure and properties (mainly mechanical ones), and how the stacking fault energy, and/or short-range order (SRO) determines the corresponding deformation mechanism. The influence of minor-alloying on their crystal structure and variations in deformation modes are critically discussed. Lastly, some insights and challenges are outlined.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101032"},"PeriodicalIF":12.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Accelerated emergence of CoNi-based medium-entropy alloys with emphasis on their mechanical properties\",\"authors\":\"Raymond Kwesi Nutor , Qingping Cao , Xiaodong Wang , Shaoqing Ding , Dongxian Zhang , Jian-Zhong Jiang\",\"doi\":\"10.1016/j.cossms.2022.101032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of alloying has evolved over the centuries and in the past decade and a half, the emergence of the high entropy alloying concept has completely changed our perception of alloy design. This alloying strategy has been found to exhibit exciting properties such as high strength, excellent corrosion resistance, high cryogenic fracture toughness, thermal stability, and irradiation resistance. While the fcc-structured equiatomic CrMnFeCoNi has been very popular over the years, the discovery of the superior properties by a ternary CoNiCr alloy, kick-started a new era for medium-entropy alloy-focused research in the last 5–10 years due to the realization that “medium is better”. Here we review the recent progress made in the development of medium entropy alloys from a binary CoNi building block (CoNi-M, where M is Fe, Cr, or V), which are prototype systems of medium-entropy alloys. We discuss the relationship between their microstructure and properties (mainly mechanical ones), and how the stacking fault energy, and/or short-range order (SRO) determines the corresponding deformation mechanism. The influence of minor-alloying on their crystal structure and variations in deformation modes are critically discussed. Lastly, some insights and challenges are outlined.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 6\",\"pages\":\"Article 101032\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000523\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000523","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated emergence of CoNi-based medium-entropy alloys with emphasis on their mechanical properties
The concept of alloying has evolved over the centuries and in the past decade and a half, the emergence of the high entropy alloying concept has completely changed our perception of alloy design. This alloying strategy has been found to exhibit exciting properties such as high strength, excellent corrosion resistance, high cryogenic fracture toughness, thermal stability, and irradiation resistance. While the fcc-structured equiatomic CrMnFeCoNi has been very popular over the years, the discovery of the superior properties by a ternary CoNiCr alloy, kick-started a new era for medium-entropy alloy-focused research in the last 5–10 years due to the realization that “medium is better”. Here we review the recent progress made in the development of medium entropy alloys from a binary CoNi building block (CoNi-M, where M is Fe, Cr, or V), which are prototype systems of medium-entropy alloys. We discuss the relationship between their microstructure and properties (mainly mechanical ones), and how the stacking fault energy, and/or short-range order (SRO) determines the corresponding deformation mechanism. The influence of minor-alloying on their crystal structure and variations in deformation modes are critically discussed. Lastly, some insights and challenges are outlined.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field