{"title":"求解双层优化问题的多任务代理辅助差分进化方法","authors":"Igor L. S. Russo, H. Barbosa","doi":"10.1109/CEC55065.2022.9870241","DOIUrl":null,"url":null,"abstract":"Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multitasking surrogate-assisted differential evolution method for solving bi-level optimization problems\",\"authors\":\"Igor L. S. Russo, H. Barbosa\",\"doi\":\"10.1109/CEC55065.2022.9870241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multitasking surrogate-assisted differential evolution method for solving bi-level optimization problems
Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.