利用未标记数据的迁移学习优化核函数

M. Abbasnejad, D. Ramachandram, R. Mandava
{"title":"利用未标记数据的迁移学习优化核函数","authors":"M. Abbasnejad, D. Ramachandram, R. Mandava","doi":"10.1109/ICMV.2009.10","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach to learn the kernel which uses transferred knowledge from unlabeled data to cope with situations where training examples are scarce. In our approach, unlabeled data has been used to construct an optimized kernel that better generalizes on the target dataset. For the proposed kernel learning algorithm, Fisher Discriminant Analysis (FDA) is used in conjunction with Maximum Mean Discrepancy (MMD) test of statistics to optimize a base kernel using labeled and unlabeled data. Thereafter, the constructed kernel from both labeled and unlabeled datasets is used in SVM to evaluate the results which proved to increase prediction accuracy.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing Kernel Functions Using Transfer Learning from Unlabeled Data\",\"authors\":\"M. Abbasnejad, D. Ramachandram, R. Mandava\",\"doi\":\"10.1109/ICMV.2009.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach to learn the kernel which uses transferred knowledge from unlabeled data to cope with situations where training examples are scarce. In our approach, unlabeled data has been used to construct an optimized kernel that better generalizes on the target dataset. For the proposed kernel learning algorithm, Fisher Discriminant Analysis (FDA) is used in conjunction with Maximum Mean Discrepancy (MMD) test of statistics to optimize a base kernel using labeled and unlabeled data. Thereafter, the constructed kernel from both labeled and unlabeled datasets is used in SVM to evaluate the results which proved to increase prediction accuracy.\",\"PeriodicalId\":315778,\"journal\":{\"name\":\"2009 Second International Conference on Machine Vision\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMV.2009.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种利用从未标记数据中转移的知识来学习核的方法,以应对训练样本稀缺的情况。在我们的方法中,未标记的数据被用来构建一个优化的内核,更好地泛化目标数据集。对于所提出的核学习算法,Fisher判别分析(FDA)与统计量的最大平均差异(MMD)检验结合使用标记和未标记数据来优化基本核。然后,将标记和未标记数据集构建的核用于支持向量机评估结果,证明了预测精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Kernel Functions Using Transfer Learning from Unlabeled Data
In this paper, we propose an approach to learn the kernel which uses transferred knowledge from unlabeled data to cope with situations where training examples are scarce. In our approach, unlabeled data has been used to construct an optimized kernel that better generalizes on the target dataset. For the proposed kernel learning algorithm, Fisher Discriminant Analysis (FDA) is used in conjunction with Maximum Mean Discrepancy (MMD) test of statistics to optimize a base kernel using labeled and unlabeled data. Thereafter, the constructed kernel from both labeled and unlabeled datasets is used in SVM to evaluate the results which proved to increase prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1