基于GPU的稀疏深度神经网络性能优化

Yucheng Shi, Long Ren
{"title":"基于GPU的稀疏深度神经网络性能优化","authors":"Yucheng Shi, Long Ren","doi":"10.1145/3546000.3546011","DOIUrl":null,"url":null,"abstract":"Deep neural networks are widely used in various fields. However, due to the large scale of the latest deep neural networks, the research on the sparsity of deep neural networks is constantly carried out. The implementation of the sparse deep neural network on GPU can further accelerate the computing speed of a sparse deep neural network. The performance of the GPU code of the CUDA version is far superior to the CPU codes of the Matlab version, which confirms the great superiority of the sparse deep neural network implementation on GPU. And the GPU code of the CUDA version is up x1.61 faster than the CUSPARSE version when the deep neural network has 1024 neurons and the 1920 layers.","PeriodicalId":196955,"journal":{"name":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization of Sparse Deep Neural Networks Based on GPU\",\"authors\":\"Yucheng Shi, Long Ren\",\"doi\":\"10.1145/3546000.3546011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are widely used in various fields. However, due to the large scale of the latest deep neural networks, the research on the sparsity of deep neural networks is constantly carried out. The implementation of the sparse deep neural network on GPU can further accelerate the computing speed of a sparse deep neural network. The performance of the GPU code of the CUDA version is far superior to the CPU codes of the Matlab version, which confirms the great superiority of the sparse deep neural network implementation on GPU. And the GPU code of the CUDA version is up x1.61 faster than the CUSPARSE version when the deep neural network has 1024 neurons and the 1920 layers.\",\"PeriodicalId\":196955,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546000.3546011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546000.3546011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络广泛应用于各个领域。然而,由于最新的深度神经网络规模庞大,对深度神经网络稀疏性的研究不断进行。稀疏深度神经网络在GPU上的实现可以进一步加快稀疏深度神经网络的计算速度。CUDA版本的GPU代码性能远优于Matlab版本的CPU代码,证实了稀疏深度神经网络在GPU上实现的巨大优越性。当深度神经网络有1024个神经元和1920层时,CUDA版本的GPU代码比CUSPARSE版本快x1.61。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Optimization of Sparse Deep Neural Networks Based on GPU
Deep neural networks are widely used in various fields. However, due to the large scale of the latest deep neural networks, the research on the sparsity of deep neural networks is constantly carried out. The implementation of the sparse deep neural network on GPU can further accelerate the computing speed of a sparse deep neural network. The performance of the GPU code of the CUDA version is far superior to the CPU codes of the Matlab version, which confirms the great superiority of the sparse deep neural network implementation on GPU. And the GPU code of the CUDA version is up x1.61 faster than the CUSPARSE version when the deep neural network has 1024 neurons and the 1920 layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Track planning and obstacle avoidance of wave glider based on improved artificial potential field algorithm Explore Deep Feature Learning to Power Equipment Monitoring and Defect Detection Attention Modulates the Neural Oscillation of Theta Frequency in Audiovisual Integration Research on Medical Image Classification Based on Image Segmentation and Feature Fusion High-Performance Cryptographic SoC Virtual Prototyping Platform Based on RISC-V VP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1