{"title":"短通道hemt的电子动力学和器件物理:横畴形成、速度超调和短通道效应","authors":"Y. Awano, M. Kosugi, S. Kuroda, T. Mimura, M. Abe","doi":"10.1109/CORNEL.1989.79820","DOIUrl":null,"url":null,"abstract":"The authors simulated the electron dynamics and physics in sub-quarter-micron-gate HEMTs (high electron mobility transistors) and fabricated devices for testing their theories on the short-channel effect. They confirmed near-ballistic electron transport under the gate and predicted transverse-domain formation. They introduce a parameter called the channel aspect ratio, which could serve as a design rule for determining the extent of the short-channel effect. Measurements show that the threshold voltage shift is almost negligible for gates as short as 0.14 mu m. Thus, within the range studied, HEMTs do require a special design that would limit their applications.<<ETX>>","PeriodicalId":445524,"journal":{"name":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electron dynamics and device physics of short-channel HEMTs: transverse-domain formation, velocity overshoot, and short-channel effects\",\"authors\":\"Y. Awano, M. Kosugi, S. Kuroda, T. Mimura, M. Abe\",\"doi\":\"10.1109/CORNEL.1989.79820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors simulated the electron dynamics and physics in sub-quarter-micron-gate HEMTs (high electron mobility transistors) and fabricated devices for testing their theories on the short-channel effect. They confirmed near-ballistic electron transport under the gate and predicted transverse-domain formation. They introduce a parameter called the channel aspect ratio, which could serve as a design rule for determining the extent of the short-channel effect. Measurements show that the threshold voltage shift is almost negligible for gates as short as 0.14 mu m. Thus, within the range studied, HEMTs do require a special design that would limit their applications.<<ETX>>\",\"PeriodicalId\":445524,\"journal\":{\"name\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1989.79820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1989.79820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electron dynamics and device physics of short-channel HEMTs: transverse-domain formation, velocity overshoot, and short-channel effects
The authors simulated the electron dynamics and physics in sub-quarter-micron-gate HEMTs (high electron mobility transistors) and fabricated devices for testing their theories on the short-channel effect. They confirmed near-ballistic electron transport under the gate and predicted transverse-domain formation. They introduce a parameter called the channel aspect ratio, which could serve as a design rule for determining the extent of the short-channel effect. Measurements show that the threshold voltage shift is almost negligible for gates as short as 0.14 mu m. Thus, within the range studied, HEMTs do require a special design that would limit their applications.<>