第二代实时细胞神经网络处理器RTCNNP-v2的演示

N. Yildiz, E. Cesur, V. Tavsanoglu
{"title":"第二代实时细胞神经网络处理器RTCNNP-v2的演示","authors":"N. Yildiz, E. Cesur, V. Tavsanoglu","doi":"10.1109/CNNA.2012.6331471","DOIUrl":null,"url":null,"abstract":"This proceeding is compiled from our previous works, where architecture of the Second-Generation Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v2) was proposed. The system is designed for applications where high-resolution and high-speed is desired. The structure is fully-pipelined and the processing is real-time. Proposed structure is coded in VHDL and realized on two FPGA devices: one high-end and one low-budget. The system is the only reported CNN implementation supporting real-time Full-HD video image processing, to date.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Demonstration of the Second Generation Real-Time Cellular Neural Network Processor: RTCNNP-v2\",\"authors\":\"N. Yildiz, E. Cesur, V. Tavsanoglu\",\"doi\":\"10.1109/CNNA.2012.6331471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This proceeding is compiled from our previous works, where architecture of the Second-Generation Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v2) was proposed. The system is designed for applications where high-resolution and high-speed is desired. The structure is fully-pipelined and the processing is real-time. Proposed structure is coded in VHDL and realized on two FPGA devices: one high-end and one low-budget. The system is the only reported CNN implementation supporting real-time Full-HD video image processing, to date.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本程序编译自我们之前的工作,其中提出了第二代实时细胞神经网络(CNN)处理器(RTCNNP-v2)的架构。该系统专为高分辨率和高速应用而设计。结构是全流水线的,处理是实时的。提出的结构用VHDL编码,并在两个FPGA器件上实现:一个高端和一个低预算。该系统是迄今为止唯一报道的支持实时全高清视频图像处理的CNN实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstration of the Second Generation Real-Time Cellular Neural Network Processor: RTCNNP-v2
This proceeding is compiled from our previous works, where architecture of the Second-Generation Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v2) was proposed. The system is designed for applications where high-resolution and high-speed is desired. The structure is fully-pipelined and the processing is real-time. Proposed structure is coded in VHDL and realized on two FPGA devices: one high-end and one low-budget. The system is the only reported CNN implementation supporting real-time Full-HD video image processing, to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization in cellular spin torque oscillator arrays CNN based dark signal non-uniformity estimation Advanced background elimination in digital holographic microscopy Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic 2nd order 2-D spatial filters and Cellular Neural Network implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1