F. Carpinteiro, Pedro Costa, Mario Sáenz Espinoza, Ivo M. Silva, J. Cunha
{"title":"神经动力学:神经递质囊泡运动表征的一种方法","authors":"F. Carpinteiro, Pedro Costa, Mario Sáenz Espinoza, Ivo M. Silva, J. Cunha","doi":"10.1109/ISBI.2014.6867913","DOIUrl":null,"url":null,"abstract":"Automated tracking of axonal neurotransmitter vesicles is a challenging problem in neuroscience. The present vesicle tracking is typically performed manually over confocal microscopy images. NeuronDynamics is a method designed to automate and speed-up the characterization of global vesicle movement in neurons while yielding high accuracy and precision results (similar or better than expert clinicians). For a set of fluorescent-marked vesicles “films”, Neuron-Dynamics performs a two stage approach: 1) Training: the system asks the user to mark a set of vesicles and the position of the cellular body; 2) Detection & tracking: based on the previous training, the system runs a Bayesian classifier over the image sequence to detect and classify vesicles and their movements (speed and direction). The obtained results were compared to another state-of-the-art method (FluoTracker), and were found greatly higher in accuracy, sensitivity, specificity and precision. Although NeuronDynamics is a semi-automated process, it is significantly faster than manual tracking and can be adapted to be used for similar approaches for other biological samples.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neurondynamics: A method for neurotransmitter vesicle movement characterization in neurons\",\"authors\":\"F. Carpinteiro, Pedro Costa, Mario Sáenz Espinoza, Ivo M. Silva, J. Cunha\",\"doi\":\"10.1109/ISBI.2014.6867913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated tracking of axonal neurotransmitter vesicles is a challenging problem in neuroscience. The present vesicle tracking is typically performed manually over confocal microscopy images. NeuronDynamics is a method designed to automate and speed-up the characterization of global vesicle movement in neurons while yielding high accuracy and precision results (similar or better than expert clinicians). For a set of fluorescent-marked vesicles “films”, Neuron-Dynamics performs a two stage approach: 1) Training: the system asks the user to mark a set of vesicles and the position of the cellular body; 2) Detection & tracking: based on the previous training, the system runs a Bayesian classifier over the image sequence to detect and classify vesicles and their movements (speed and direction). The obtained results were compared to another state-of-the-art method (FluoTracker), and were found greatly higher in accuracy, sensitivity, specificity and precision. Although NeuronDynamics is a semi-automated process, it is significantly faster than manual tracking and can be adapted to be used for similar approaches for other biological samples.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurondynamics: A method for neurotransmitter vesicle movement characterization in neurons
Automated tracking of axonal neurotransmitter vesicles is a challenging problem in neuroscience. The present vesicle tracking is typically performed manually over confocal microscopy images. NeuronDynamics is a method designed to automate and speed-up the characterization of global vesicle movement in neurons while yielding high accuracy and precision results (similar or better than expert clinicians). For a set of fluorescent-marked vesicles “films”, Neuron-Dynamics performs a two stage approach: 1) Training: the system asks the user to mark a set of vesicles and the position of the cellular body; 2) Detection & tracking: based on the previous training, the system runs a Bayesian classifier over the image sequence to detect and classify vesicles and their movements (speed and direction). The obtained results were compared to another state-of-the-art method (FluoTracker), and were found greatly higher in accuracy, sensitivity, specificity and precision. Although NeuronDynamics is a semi-automated process, it is significantly faster than manual tracking and can be adapted to be used for similar approaches for other biological samples.