具有相关几何不确定性的点距和正交距离问题

Yonatan Myers, Leo Joskowicz
{"title":"具有相关几何不确定性的点距和正交距离问题","authors":"Yonatan Myers, Leo Joskowicz","doi":"10.1145/1839778.1839787","DOIUrl":null,"url":null,"abstract":"Classical computational geometry algorithms handle geometric constructs whose shapes and locations are exact. However, many real-world applications require modeling and computing with geometric uncertainties, which are often coupled and mutually dependent. In this paper we address distance problems and orthogonal range queries in the plane, subject to geometric uncertainty. Point coordinates and range uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), a general and computationally efficient worst-case, first-order linear approximation of geometric uncertainty that supports dependence among uncertainties. We present algorithms for closest pair, diameter and bounding box problems, and efficient algorithms for uncertain range queries: uncertain range/nominal points, nominal range/uncertain points, uncertain range/uncertain points, with independent/dependent uncertainties.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Point distance and orthogonal range problems with dependent geometric uncertainties\",\"authors\":\"Yonatan Myers, Leo Joskowicz\",\"doi\":\"10.1145/1839778.1839787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical computational geometry algorithms handle geometric constructs whose shapes and locations are exact. However, many real-world applications require modeling and computing with geometric uncertainties, which are often coupled and mutually dependent. In this paper we address distance problems and orthogonal range queries in the plane, subject to geometric uncertainty. Point coordinates and range uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), a general and computationally efficient worst-case, first-order linear approximation of geometric uncertainty that supports dependence among uncertainties. We present algorithms for closest pair, diameter and bounding box problems, and efficient algorithms for uncertain range queries: uncertain range/nominal points, nominal range/uncertain points, uncertain range/uncertain points, with independent/dependent uncertainties.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1839778.1839787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

经典计算几何算法处理形状和位置精确的几何结构。然而,许多现实世界的应用需要具有几何不确定性的建模和计算,这些不确定性通常是耦合和相互依赖的。在本文中,我们讨论了平面上的距离问题和正交距离查询,这些问题受到几何不确定性的影响。点坐标和范围不确定性用线性参数几何不确定性模型(LPGUM)建模,LPGUM是一种通用的、计算效率高的最坏情况下的一阶几何不确定性线性近似,支持不确定性之间的相关性。我们提出了最接近对、直径和边界盒问题的算法,以及不确定范围查询的有效算法:不确定范围/标称点、标称范围/不确定点、不确定范围/不确定点、独立/依赖不确定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point distance and orthogonal range problems with dependent geometric uncertainties
Classical computational geometry algorithms handle geometric constructs whose shapes and locations are exact. However, many real-world applications require modeling and computing with geometric uncertainties, which are often coupled and mutually dependent. In this paper we address distance problems and orthogonal range queries in the plane, subject to geometric uncertainty. Point coordinates and range uncertainties are modeled with the Linear Parametric Geometric Uncertainty Model (LPGUM), a general and computationally efficient worst-case, first-order linear approximation of geometric uncertainty that supports dependence among uncertainties. We present algorithms for closest pair, diameter and bounding box problems, and efficient algorithms for uncertain range queries: uncertain range/nominal points, nominal range/uncertain points, uncertain range/uncertain points, with independent/dependent uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Minkowski sums of polyhedra via controlled linear perturbation Adaptive surface reconstruction based on implicit PHT-splines Hexahedral shell mesh construction via volumetric polycube map Hierarchical surface fairing with constraints Accurate moment computation using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1