基于卷积神经网络的快速图像识别加速器设计

Yu Liu, Min Xiang, Xiaoxiang Zhao, Run Zhou
{"title":"基于卷积神经网络的快速图像识别加速器设计","authors":"Yu Liu, Min Xiang, Xiaoxiang Zhao, Run Zhou","doi":"10.1109/ICDSBA51020.2020.00085","DOIUrl":null,"url":null,"abstract":"Due to the limited resources of the Internet of things terminal, the speed of image recognition is difficult to meet the application requirements. A design method of a fast image recognition accelerator based on a convolutional neural network (CNN) is proposed. A pipeline processing scheme combining software and hardware is designed. The operation strategy of the parallel image block, parallel input channel, and parallel output channel is adopted. Based on this strategy, a model of terminal resources and recognition time is established. By solving the model, the optimal number of image partition blocks and convolution parallel parameters are obtained. The experimental results show that the computational performance of the proposed accelerator is improved from 8.86 GOPs to 12.26 GOPs, which effectively improves the speed of image recognition.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Fast Image Recognition Accelerator Based on Convolutional Neural Network\",\"authors\":\"Yu Liu, Min Xiang, Xiaoxiang Zhao, Run Zhou\",\"doi\":\"10.1109/ICDSBA51020.2020.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limited resources of the Internet of things terminal, the speed of image recognition is difficult to meet the application requirements. A design method of a fast image recognition accelerator based on a convolutional neural network (CNN) is proposed. A pipeline processing scheme combining software and hardware is designed. The operation strategy of the parallel image block, parallel input channel, and parallel output channel is adopted. Based on this strategy, a model of terminal resources and recognition time is established. By solving the model, the optimal number of image partition blocks and convolution parallel parameters are obtained. The experimental results show that the computational performance of the proposed accelerator is improved from 8.86 GOPs to 12.26 GOPs, which effectively improves the speed of image recognition.\",\"PeriodicalId\":354742,\"journal\":{\"name\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSBA51020.2020.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于物联网终端资源有限,图像识别速度难以满足应用需求。提出了一种基于卷积神经网络(CNN)的快速图像识别加速器设计方法。设计了一种软硬件结合的流水线处理方案。采用并行图像块、并行输入通道、并行输出通道的运行策略。在此基础上,建立了终端资源与识别时间的模型。通过求解该模型,得到了图像分割块的最优数量和卷积并行参数。实验结果表明,该加速器的计算性能从8.86 GOPs提高到12.26 GOPs,有效提高了图像识别速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Fast Image Recognition Accelerator Based on Convolutional Neural Network
Due to the limited resources of the Internet of things terminal, the speed of image recognition is difficult to meet the application requirements. A design method of a fast image recognition accelerator based on a convolutional neural network (CNN) is proposed. A pipeline processing scheme combining software and hardware is designed. The operation strategy of the parallel image block, parallel input channel, and parallel output channel is adopted. Based on this strategy, a model of terminal resources and recognition time is established. By solving the model, the optimal number of image partition blocks and convolution parallel parameters are obtained. The experimental results show that the computational performance of the proposed accelerator is improved from 8.86 GOPs to 12.26 GOPs, which effectively improves the speed of image recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Driving Engine of Quantitative Trading Strategy Based on Event Processing A Composite 3D-2D Visual Surface Defects Inspection Method for Steel Bar Intelligent Manufacturing Analysis of the Synergetic Development Degree of the Digital Economy and Green Innovation Research on Heterogenous Fleet Dynamic Vehicle Rounting Problem Based on Memetic Algorithm Research on Loading and Unloading Path Optimization for AGV at Automatic Container Terminal Based on Improved Particle Swarm Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1